Category: Photos/Pictures of Fossils

Hyoliths Find a Home

Ancient, Long Extinct Animal Finds Place on Tree of Life

A bizarre shelled marine creature’s place in the Animal Kingdom has finally been resolved thanks to the efforts of a remarkable student at the University of Toronto.  Undergraduate student Joseph Moysiuk has identified Hyoliths, not as members of the Mollusca, which many palaeontologists had previously believed, but as lophophores and as such, they are closely related to brachiopods.

An Illustration of the Hyolith Haplophrentis

The Hyolith Haplophrentis.

An illustration of the Hyolith Haplophrentis.

Picture Credit: Royal Ontario Museum/Danielle Dufault

In the Hyolith illustration above, a tiny brachiopod can be seen attached to the nearest appendage of Haplophrentis.

The distinctive appearance and structure of the Hyolith skeleton has obstructed previous attempts to classify these animals.  All Hyoliths had an elongated, bilaterally symmetrical cone-shaped shell and a smaller cap-like shell that covered the opening of the conical shell (known as an operculum).  Some species also bore a pair of rigid, curved spines (helens) that protruded from between the conical shell and operculum (the shell cap), structures with no equivalents in any other group of animals.

Extensive Fossil Record

The mineralised external skeletons (argonite) and their sessile/semi-sessile habit (living on the seabed), gives these animals, which range in size from 1 cm to around 5 cm in length, a good fossil preservation potential.  The earliest fossil evidence for this type of creature occurs in rocks dating from around 540 million years ago (Cambrian).  These filter feeders seem to have persisted throughout the Palaeozoic and the Hyolith fossil record is relatively abundant and geographically widespread.  The Hyolitha were very diverse during the Cambrian and the subsequent Ordovician geological period, before their fossil record and their presence as an important member of marine benthos communities (animals and plants living on the sea floor) declines.  Hyoliths are one of many types of marine invertebrate that failed to survive into the Mesozoic.

The Cambrian Hyolith Haplophrentis

Burgess Shale Hyolith fossil.

Soft tissue of a Cambrian Hyolith (Haplophrentis) has been preserved.

Picture Credit:  Royal Ontario Museum

In the picture of a Hyolith fossil above, (genus Haplophrentis – H. carinatus), the conical shape of the shell can be clearly made out and the partially extended lophophore (feeding organ) can be seen.  The lophophore consisting of numerous, blackened, thin, finger-like extensions is highlighted against the operculum.  The curved spines are the helens.

Writing in the academic journal “Nature”, student Joseph Moysiuk and his fellow authors, Durham University’s Martin Smith and Burgess Shale fossil expert Jean-Bernard Caron, studied over 1,500 fossil specimens from the mid-Cambrian strata that represent elements of the Burgess Shale (British Columbia) and the Spence Shale Formations (Idaho and Utah).  The Hyolith material (Haplophrentis) and its exceptional state of preservation permitted the team to assess the soft tissue structures and from this information the team were able to deduce their taxonomic affinities.

Dr Caron explained:

“Burgess Shale fossils are exceptional because they show preservation of soft tissues which are not usually preserved in normal conditions.”

Not Closely Related to Snails, Cephalopods and Other Molluscs

The analysis showed that Hyoliths are not closely related to snails, squid or other members of the Mollusca.  They are instead, more closely related to the Brachiopoda, a group of animals with a rich fossil record but with few extant representatives.  Brachiopods have a soft body enclosed between upper and lower shells (valves), unlike the left and right arrangement of valves in bivalve molluscs.  Brachiopods open their valves at the front when feeding but otherwise keep them closed to protect their feeding apparatus and other body parts.

Student Moysiuk commented:

“Our most important and surprising discovery is the Hyolith feeding structure, which is a row of flexible tentacles extending away from the mouth, contained within the cavity between the lower conical shell and upper cap-like shell.  Only one group of living animals – the brachiopods, has a comparable feeding structure enclosed by a pair of valves.  This finding demonstrates that brachiopods, and not molluscs, are the closest surviving relatives of Hyoliths.”

The undergraduate added:

“It suggests that these Hyoliths fed on organic material suspended in water as living brachiopods do today, sweeping food into their mouths with their tentacles,”

A Diagram Showing the Proposed Anatomy of a Hyolith

Haplophrentis anatomy.

Diagrams showing the anatomy of the Cambrian Hyolith Haplophrentis.

Picture Credit: Royal Ontario Museum/Danielle Dufault

The Function of the Helens

Examination of the orientation of the helens in multiple Hyolith specimens from the Burgess Shale suggests that these spines may have been used like stilts to lift the body of the animal above the sediment, elevating the feeding apparatus to enhance feeding.

Dr Caron led recent field exhibitions to the Burgess Shale.  This resulted in the discovery of many specimens that form the basis of this research.  The key specimens came from recently discovered deposits near Stanley Glacier and Marble Canyon in Kootenay National Park, about twenty miles south-east of the original Burgess Shale site in Yoho National Park.

Exploring the Burgess Shale

Exploring the Burgess Shales.

Student Joseph Moysiuk (left) in the field with Dr Jean-Bernard Caron.

Picture Credit: Joseph Moysiuk

Palaeontology lecturer Martin Smith expressed his delight at being able to help solve a 175-year-old palaeontological puzzle.  Hyolith fossils have been included in a number of fossil studies previously, but until now, where these creatures featured in the tree of life remained open to speculation.

Dr Smith stated:

“Resolving the debate over the Hyoliths adds to our understanding of the Cambrian Explosion, the period of rapid evolutionary development when most major animal groups emerge in the fossil record.  Our study reiterates the importance of soft tissue preservation from Burgess Shale-type deposits in illuminating the evolutionary history of creatures about which we still know very little.”

Everything Dinosaur acknowledges the assistance of the University of Toronto in the compilation of this article.

Mapping the Microscopic Life Preserved in Rhynie Chert

Exploring a Microscopic World 407 Million Years Old

Very often, it is the news about giant prehistoric animals that grab all the attention from the media.  Dinosaurs, Woolly Mammoths, Pterosaurs and monstrous fish such as prehistoric sharks, get all the headlines, but today, we want to highlight a new paper published in the online, open access journal PLoS One, a paper that looks at the discovery of an exquisitely preserved fungus found in association with the minute eggs of a prehistoric freshwater crustacean.  This freshwater fungus, lived far earlier in the history of our planet than any hominin, Woolly Mammoth, Pterosaur or member of the Dinosauria for that matter.  In fact, this newly discovered species of fungus, a fungus that helped to breakdown freshwater plant matter, thrived at around the same time as the very first sharks.

A High Magnification View of the New Species of Fungus

A highly magnified view of the Devonian fungus.

Cultoraquaticus trewini, a new Early Devonian Chytridiomycota.

Picture Credit: PLoS One

The fossils were discovered by a team of international scientists which included researchers from the Natural History Museum (London), the University of Copenhagen and the University of Maine.  The team analysed microscopic slices of Rhynie Chert from Aberdeenshire, Scotland.  The chert represents sedimentary deposits formed when volcanic material from hydrothermal vents periodically erupted and covered an area that featured a braided river channel and an alluvial flood plain.  These hot, viscose fluids preserved both primitive terrestrial and freshwater ecosystems, providing a window into the life that existed in both these types of habitat in the Early Devonian.  Various types of fungi have been identified in the Rhynie Chert, this Lagerstätte has provided palaeontologists with evidence of fungal parasitism and symbiosis with early land plants and algae.  Fossils of the earliest freshwater branchiopod crustaceans (fairy shrimps and their close relatives), have also been discovered.

Cultoraquaticus trewini

The new species has been named Cultoraquaticus trewini, the genus name refers to the aquatic habitat of the fungus.  The specific epithet honours Professor Nigel Trewin (University of Aberdeen), for his contribution to the understanding of the geology of the Rhynie Chert.  The fungus has been attributed to the Phylum Chytridiomycota, based on its internal structure, the associated papillae and its size.  The exquisite preservation of this 407 million-year-old fossil has enabled scientists to assess this ancient species’ resemblance to extant fungi.  It seems that these fungi were a parasite of algae and primitive prehistoric freshwater plants.  The tiny, spiked structures seen in the photograph above (B, C and E) are (most likely), the eggs of the Early Devonian freshwater shrimp Lepidocaris rhyniensis.

Laser Scans Show the Fungus and the Eggs of the Early Devonian Crustacean (L. rhyniensis)

Crustacean eggs and the fungus revealed by laser scanning.

Confocal laser scanning images of resting eggs of Lepidocaris and of the fungus Cultoraquaticus trewini.

Picture Credit: PLoS One

The tiny, rounded and very spiky eggs of Lepidocaris reaffirm the idea that ancient branchiopods adapted to freshwater environments early in the Devonian.

Comparison Between Lepidocaris (Extinct) and Linderiella (Extant)

Ancient freshwater crustacean compared to an extant freshwater form.

Lepidocaris rhyniensis (A) and its resting egg (B) compared to modern anostracean Linderiella occidentalis (C) and resting egg of Linderiella santarosae (D). Brood pouch is indicated by an arrow. Scale bars represent 20 μm in (B) and 95 μm in (D).

Picture Credit: PLoS One

The Earliest Eggs of the Branchiopoda

Although the research team cannot be one hundred percent certain that the tiny, spiky shapes are the eggs of Lepidocaris, they have made this conclusion based on the fact that L. rhyniensis fossil remains, including individuals at various growth stages, are relatively abundant in the Rhynie Chert deposits.  The fossils closely resembles the egg cysts of various members of Anostraca (fairy shrimps) and they, most probably, represent the earliest eggs of freshwater branchiopods discovered to date.

Sometimes, micro-fossils are not given the prominence they deserve in the mainstream media.  We praise the efforts of the research team for providing more information on the remarkable Rhynie Chert Lagerstätte and for identifying a new fungal/plant matter interaction that helped in the breakdown and mobilisation of nutrients in early freshwater food webs.

The scientific paper: A New Chytridiomycete Fungus Intermixed with Crustacean Resting Eggs in a 407-Million-Year-Old Continental Freshwater Environment

A Moroccan Fossil Safari

Amazing Trilobite Fossils from Morocco

Morocco is a very beautiful country.  Tourists might be attracted to its wonderful beaches as well as the bustling bazaars and souks but there is much more to this part of north Africa, especially if you are a keen fossil hunter.  Take for example, the fossil hunting trips organised by young geologist Mohamed Koumali, he and his enthusiastic team give clients the opportunity to explore the amazing and highly fossiliferous deposits of Tinghir Province, a part of the world famous for its Trilobite fossils.

A Wonderful Example of a Moroccan Trilobite

A prepared fossil Trilobite.

A fantastic Moroccan Trilobite fossil.

Picture Credit: Koumali Trilobites

The picture above shows one of the amazing Trilobite fossils from south-eastern Morocco.  The specimen has been carefully prepared and fine details of the exoskeleton have been revealed.

Trilobita from Morocco

Team members from Everything Dinosaur have been lucky enough to visit Morocco on numerous occasions.  The geology of the country is truly remarkable and fans of the Trilobita can acquire specimens that represent at least nine Orders of Trilobites, and we thought Wales was at the heart of Trilobite fossil hunting adventures!  Morocco has a number of advantages over Wales when it comes to going on a Trilobite hunt.  For a start, the weather tends to be warmer, sun protection is definitely recommended, as is cool clothing and a hat.  The hot, dry winds have removed what soil there was exposing, great rocky pavements, although some of the fossil bearing strata is as hard as concrete and expert guides are required to help give visitors the best chance of finding a prize fossil specimen.

A Chance to Explore the Palaeozoic Past of Morocco

A Moroccan Trilobite hunting trip.

Spectacular views are guaranteed on a Moroccan Trilobite hunt.

Picture Credit: Koumali Trilobites

Depending upon which part of the country you visit, tourists can search for some of the best examples of Late Cambrian Trilobite specimens, but there are also great swathes of Ordovcian and Devonian-aged strata to explore.  The range of Trilobite specimens associated with rocks of Devonian age is particularly diverse, Mohamed’s home time of Alnif is regarded by many invertebrate palaeontologists as the best place in the world to find complete fossils of the spiny, thumb-sized Trilobite Dicranurus monstrosus.  This part of Morocco has yielded much larger examples of Devonian Trilobite fauna.  The Bou Dîb Formation exposures have provided scientists with some wonderful examples of the hand-sized Drotops megalomanicus, complete with huge, compound eyes.  The team at Koumali Trilobites take parties out to explore the remarkable rock formations and with a little luck, they too, can uncover an amazing Trilobite fossil.

Cracking Open a Nodule to Reveal the Fossil Treasure Within

A Moroccan Trilobite fossil.

The slab and counter slab of a Trilobite fossil.

Picture Credit: Koumali Trilobites

Fluent in both English and French, Mohamed enjoys taking visitors out on fossil hunting trips, helping to educate and to inform people about the rich fossil heritage of his home.  He has also had the opportunity to exhibit at several European fossil trade shows, including the prestigious Saint Marie-Aux-Mines Mineral and Gem show in France.

To enquire about tours, email: koumali.trilobite@yahoo.fr for information.  Or why not check out Mohamed’s Facebook page for further details: Message Mohamed Koumali via Facebook

An Amazing Day Exploring the Geology of South-eastern Morocco

Hunting for Moroccan Trilobites.

Out on a Trilobite hunt.

Picture Credit: Koumali Trilobites

A guided tour, a fossil walk through the beautiful Moroccan landscape with an expert guide, is one of the best ways for amateur fossil hunters to explore the geology of North Africa.

Studying the Growth Stages of Parareptiles

Juvenile Skull Specimen of Delorhynchus cifellii Helps in Growth Study

A team of scientists from the University of Toronto Mississauga (Canada), have analysed a total of seven different skulls of the parareptile Delorhynchus cifellii collected from the Early Permian fissure-fill deposits of Richard Spur, Oklahoma.   This research, looking at the skulls which represent different growth stages of this primitive reptile, is helping palaeontologists to learn more about how the skulls of early Tetrapods changed as they grew.  It may also provide a valuable insight into how temporal fenestrae (holes in the skull), of other types of vertebrate evolved.

An Illustration of a Typical Early Reptile

The parareptile Delorhynchus.

Everything Dinosaur’s illustration of the Early Permian parareptile Delorhynchus.

Picture Credit: Everything Dinosaur

Detailed Study of Cranial Ontogeny

Two species have been assigned to the genus Delorhynchus, the first D. priscus was named and described in 1962.  In 2014, a second species was described D. cifellii, from a series of fossilised remains, including cranial (skull) material excavated from strata estimated to be around 275 million-years-old.  The researchers, which included Yara Haridy (Dept. of Biology, University of Toronto Mississauga), examined the partially articulated skull and jaw of a Delorhynchus cifellii believed to represent a juvenile (based on the size of the skull compared to other specimens and the lack of fully fused skull bones).  This specimen probably represents an earlier growth stage (ontogenetic stage) of all the other known Delorhynchus skull material and as such, it helps provide a basis for a better understanding of how these ancient reptiles changed as they matured.

Views of the Delorhynchus cifellii Juvenile Skull Material Used in the Study

Delorhynchus fossil.

The cranial fossil material of a juvenile Delorhynchus.

Picture Credit: University of Toronto Mississauga

The photograph shows (above) a line drawing and image of the fossil material (right lateral view) and (below), a line drawing and image of the fossil material seen from above (dorsal view).  The line of articulated vertebrae shown in the dorsal view do not belong to this individual.  Scale bar = 1 centimetre.

Key

an, angular; ar, articular; ch, ceratohyal; d, dentary; f, frontal; j, jugal; la, lacrimal; m, maxilla; n, nasal; pal, palatine; pf, postfrontal; pm, premaxilla; po, postorbital; prf, prefrontal; q, quadrate; qj, quadratojugal; so, supraorbital; sp, splenial; sq, squamosal; st, supratemporal.

Comparisons between this juvenile and previously described specimens indicate that the size and shape of the temporal fenestra in Delorhynchus vary as the animal ages.  These changes occur as the skull bones bordering the fenestra change shape.  The growth series available for study, show that the jugal (cheek bone) becomes more robust as the reptile gets older and the proportionate size of the temporal fenestra is reduced.  The scientists discovered that as Delorhynchus grew, the single, large fenestra seen in the skull of juveniles was gradually sub-divided into two smaller holes in more mature individuals.

Line Drawings Showing a Comparison between a Juvenile Delorhynchus Skull (Top) with a Mature Adult Delorhynchus (Bottom)

Delorhynchus skull comparisons.

A comparison between the composite reconstructions of the youngest and most mature individuals in the Delorhynchus growth series.

Picture Credit: University of Toronto Mississauga

The research team highlight the fact that the fossil record showing the growth of Delorhynchus is far from complete.  They also point out that the largest specimen is not a fully mature individual, however, the data suggests that as the skull changed so the fenestra became much smaller and it would eventually be split into two small holes, due to the extension of the jugal bone.  The complete closure of the temporal fenestra may have occurred in very old animals, this cannot be ruled out, but the available skulls have provided a valuable insight into the possible growth trajectory of the fenestra of parareptiles.   The scientists also speculate that the research on this anapsid (likely to have no fenestra in the skull when an adult), may help them to better understand the evolution of skulls in other anapsids, as well as diapsids (one pair of holes) and the synapsids (two pairs of holes).

The scientific paper: “Ontogenetic Change in the Temporal Region of the Early Permian Parareptile Delorhynchus cifellii and the Implications for Closure of the Temporal Fenestra in Amniotes” published in the on line academic journal PLoS One.

Bridging Romer’s Gap – Early Scottish Tetrapods

New Tetrapods from the Lower Carboniferous

Last spring Everything Dinosaur team members had the opportunity to travel to Edinburgh (Scotland), to view several early Tetrapod fossils that had been excavated from a number of remarkable fossil sites located in the Scottish Borders.  This week sees the publication of a scientific paper that describes five new Tetrapods, helping to greater enrich our understanding with regards to the evolution and diversity of some of the very first vertebrates to adapt to terrestrial environments.

Scotland 355 Million Years Ago

Scotland 355 million years ago.

Scotland in the Early Carboniferous.

Picture Credit: Mark Witton/National Museums of Scotland

Scotland and Romer’s Gap

During the Late Devonian and into the Carboniferous, the area of land that makes up much of Scotland today was part of a giant super-continent called Laurentia.  The Scottish Borders were located almost on the equator and the low-lying land was covered with some of the first large forests to evolve on Earth.  The climate was hot, humid and steamy, with seasonal flooding and also periods of intense drought.  A team of scientists, that includes leading early Tetrapod specialist Professor Jennifer Clack (Cambridge University), reporting in the academic journal “Nature Ecology & Evolution” describe five new Early Carboniferous Tetrapods, helping to narrow a fifteen-million-year hole in the fossil record known as Romer’s Gap.  Fossils of Late Devonian Tetrapods have been found, an example of which is Acanthostega, a stem Tetrapod, fossils of Acanthostega have been found in Greenland, including fossil material found by Jennifer Clack.  Acanthostega dates from around 365 million-years-ago, however, the next type of fossils found, date from rocks approximately 350 million-years-old and reveal animals with strong rib cages to support lungs and long, slender limbs – adaptations for a life on land.  Harvard professor Alfred Sherwood Romer, was one of the first scientists to research early Tetrapods and to identify this hole in the fossil record.  This fifteen-million-year interval became known as “Romer’s Gap”.

Professor Alfred Sherwood Romer (1894-1973)

Alfred Romer (courtesy of Harvard University archives)

Harvard Professor Alfred Sherwood Romer.

Picture Credit: Harvard University Archives

Five Almost Complete Fossils Plus Many Fragments of Bone

Building upon the early work of renowned Scottish palaeontologist Stan Wood and his co-worker Tim Smithson (Cambridge University), who, coincidentally, is also an author of this new paper, these researchers have identified a total of five new Tetrapods from rocks laid down in the very Early Carboniferous (Tournaisian stage).    Although, isolated Tetrapod limb bones dating from the Tournaisian faunal stage have been found outside of Scotland, most notably from the Horton Bluff Formation at Blue Beach, Nova Scotia (Canada), collecting from five Scottish locations has identified five new animals with at least seven other new taxa, that have yet to be fully studied.

Tournaisian Tetrapod Fossil Collecting Locations (Scotland)

Fossil locations (early Tetrapods) Scotland.

Scottish Tetrapod fossil locations.

Picture Credit: Nature Ecology & Evolution

This new research, which included exploring strata that today forms the bed of the River Whiteadder, a tributary of the River Tweed, has provided scientists with much more information about the diversity of early Tetrapods and given them an insight into the fauna and flora that existed in some of the world’s first forests.

The five new Tournaisian Tetrapods named are:

  1. Perittodus apsconditus “concealed odd tooth”, known from the cheek region of the skull, lower jaw bones and postcranial elements found at Willie’s Hole on the River Whiteadder (Chirnside).  The lower jaw measures a fraction under seven centimetres in length.
  2. Koilops herma “hollow-faced boundary marker”, the fossils consist of a natural mould of an isolated skull found at Willie’s Hole (River Whiteadder, Chirnside).  The skull measures 8 centimetres long.

Two of the New Early Carboniferous Tetrapods (Perittodus apsconditus and Koilops herma)

Tetrapod fossils helping to close "Romer's Gap".

New Tetrapod tax identified from fossils found on the Scottish borders – Perittodus apsconditus and Koilops herma.

Picture Credit: Nature Evolution & Ecology

The photograph above shows (a) a photograph of the natural mould of the skull of K. herma with interpretative line drawing (b).  Photograph of the main specimen block of Perittodus apsconditus (c), with reconstructions of the lower jaw (d-g).

Fossils and Line Drawings of Ossirarus kierani

Ossirarus fossils and illustrations.

Photographs of Ossirarus fossils with accompanying line drawings.

Picture Credit: Nature Evolution & Ecology

3.  Ossirarus kierani “Kieran’s scattered bones” from Burnmouth Ross end cliffs (see picture above which shows photographs of the fossil material and line drawings).  The species name honours the Kieran family who have done much to protect the natural habitat on this part of the Scottish coast.  The taxon has been described from a single block of stone with preserved skull elements and postcranial bones.  Ossirarus may have been a basal amniote, whilst the other four taxa named are classed as basal Tetrapods.

4.  Diploradus austiumensis “double row of teeth from the mouth of the river”, a reference to the strange configuration of the teeth in the lower jaw and the fact that the specimen, consisting of a single block of bones, was found at Burnmouth Ross end cliffs.

5.  Aytonerpeton microps “small faced crawler from Ayton”, in reference to the size of the skull and the fossil find location (foreshore of Burnmouth Ross end cliffs heading towards the small village of Ayton).

Commenting on the significance of these new Scottish fossils, Professor Clack stated:

“We’re lifting the lid on a key part of the evolutionary story of life on land.  What happened then affects everything that happens subsequently, so it affects the fact that we are here and which other animals live with us today.”

Charcoal Analysis

Sedimentary evidence analysis indicates that these early land animals lived on the low-lying land that was heavily forested, a sort of primeval, prehistoric swamp.  This region was subject to frequent flooding, the fossils of various plants and invertebrates in conjunction with these exceedingly rare vertebrae specimens from locations such as Willie’s Hole are helping scientists to build up a picture of an Early Carboniferous palaeoenvironment – one of Scotland’s first wetlands.

It had been thought that atmospheric oxygen levels crashed during the Late Devonian/Early Carboniferous that inhibited the evolution of land-based vertebrates.  A study of fusinite (fossil charcoal) collected from Willie’s Hole and the Burnmouth locations not only indicated that wildfires did occur, devastating local habitats, but chemical analysis revealed that oxygen levels did not drop below a level of around 16% in the atmosphere during the Tournaisian.  The scientists compared these results to fusinite samples taken from both younger and slightly older strata and they concluded that atmospheric oxygen levels were stable across the Devonian/Carboniferous boundary and therefore, probably did not inhibit the evolution of terrestrial vertebrates.

A spokesperson from Everything Dinosaur commented:

“It’s great to see more research being carried out in these Scottish locations, building on the work of field palaeontologists such as Stan Wood and we recognise the important role of the Natural Environment and Research Council for funding the study.  The number of potential new taxa identified from the Scottish Borders raises the tantalising possibility that there are a lot more discoveries likely to be made in sedimentary rocks of a similar age.”

The scientific paper: “Phylogenetic and Environmental Context of a Tournaisian Tetrapod Fauna” published in the journal “Nature Ecology & Evolution”.

Fossilised Bacteria Shed Light on Life Before Oxygen

Ancient African Rocks Provide Evidence of Life Before Oxygen

The fossils of ancient bacteria that existed in deep water environments during the Neoarchean Era some 2.52 billion years ago, have been identified by an international team of researchers.  They don’t represent the oldest known life on our planet, recently, Everything Dinosaur published an article on some new research that postulates that microbial colonies existed on Earth some 3.7 billion years ago*, but these South African fossils may represent the oldest evidence of a bacteria capable of oxidising sulphur (within the Class Gamma Proteobacteria), found to date.

A Highly Magnified Image of a Fossilised Bacteria

Fossilised bacteria.

A view of one of the spherical structures identified as fossil bacteria.

Picture Credit: Andrew Czaja

This discovery is significant as it sheds light on a time in Earth’s history, when, essentially, all the microbial forms that exist today had probably evolved, but the fossil record for their existence is particularly sparse. Writing in the journal of the Geological Society of America, the researchers which include scientists from the University of Cincinnati and the University of Johannesburg, report on large, organic, smooth-walled, spherical microfossils representing organisms that lived in deep water, when our planet’s atmosphere had less than one-thousandth of one percent of the oxygen we have today.

Microscopic Life in the Archean

The research team discovered the microscopic fossils preserved in black chert that had been laid down at the bottom of a deep ocean, in the Griqualand West Basin of the Kaapvaal craton of South Africa (Northern Cape Province).  Geologist Andrew Czaja (University of Cincinnati), explained that this part of South Africa was one of the few places in the world where rocks of this great age were exposed.  The fossils are very significant as they represent bacteria surviving in a very low oxygen environment, the bacteria existed prior to “Great Oxygenation Event”, sometimes referred to as the GOE, a period in Earth’s history from about 2.4 billion to 2.2 billion years ago, when water-borne cyanobacteria (blue-green bacteria), evolved photosynthesis and as a result, oxygen was released into the atmosphere.  More oxygen in our atmosphere helped drive the evolution of complex organisms, eventually leading to the development of multi-cellular life.

Commenting on this research Assistant Professor Andrew Czaja stated:

“These are the oldest reported fossil sulphur bacteria to date and this discovery is helping us reveal a diversity of life and ecosystems that existed just prior to the Great Oxidation Event, a time of major atmospheric evolution.”

Radiometric dating and geochemical isotope analysis suggest that these fossils formed on an ancient seabed more than one hundred metres down.  The bacteria fed on sulphates that probably originated on the early super-continent Vaalbara (a landmass that consisted of parts of Australia and South Africa).  With the fossils having been dated to 2.52 billion years ago, the bacteria were thriving just before the GOE, when shallow water bacteria began creating more oxygen as a by-product of photosynthesis.

Czaja’s fossils show the Neoarchean bacteria in plentiful numbers while living within the muddy sediment of the seabed.  The assistant professor and his co-researchers postulate that these early bacteria were busy ingesting volcanic hydrogen sulphide, the molecule known to give off a rotten egg smell, then emitting sulphate, a gas that has no smell.  This is the same process that goes on today as extant microbes recycle decaying organic matter into minerals and gas.  The team surmise that the ancient oceanic bacteria are likely to have consumed the molecules dissolved from sulphur rich minerals that came from the land rocks associated with Vaalbara or from volcanic rocks on the seabed.

Andrew Czaja Points to the Rock Layer where the Fossil Bacteria was Found

Indicating the layer of rock from which the fossil bacteria was collected.

Andrew Czaja (University of Cincinnati), points to the rock layer from which fossil bacteria was collected.

Picture Credit: Aaron Satkoski

Sizeable Bacteria

These fossils occur mainly as compressed and flattened solitary shapes that resemble a flattened, microscopic beach ball.  They range in size from 20 microns (µm), about half the thickness of a human hair, up to a whopping 265 µm, that’s some very large bacteria, about forty times bigger than a human red blood cell, making the fossils exceptionally large for an example of bacteria.  The research team hypothesis that these ancient bacteria were similar in habit to the modern, equally large-sized bacteria Thiomargarita, which lives in oxygen-poor, deep water environments.

Described as being morphologically similar to Proterozoic and Phanerozoic acritarchs and to certain Archaean fossils interpreted as possible blue-green bacteria (cyanobacteria), these fossils are the oldest reported sulphur processing bacteria described to date.  They reveal that microbial life was diverse as early as 2.5 billion years ago and provide further evidence that organisms can thrive in very low oxygen environments.  This may have implications for astronomers as they search for evidence of life on other planets and moons within our solar system.

Images of the Microstructures (Dark, Round Spots within Ancient Rocks)

Microstructures indicate sulphur oxidising bacteria.

Images of microstructures that have physical characteristics with the remains of spherical bacteria.

Picture Credit: Andrew Czaja

*To read Everything Dinosaur’s recently published article (September 2016), about the possible identification of evidence of microbial colonies in strata some 3.7 billion years old: 3.7 Billion-Year-Old Microbes

The scientific paper: “Sulfur-oxidizing Bacteria prior to the Great Oxidation Event from the 2.52 Ga Gamohaan Formation of South Africa”, published in “Geology” the journal of the Geological Society of America.

The Significance of Stromatolites

Praising Stromatolites

As Everything Dinosaur’s focus is on the Dinosauria, just one part of the vertebrate family tree, a tiny portion of the Phylum Chordata, we occasionally get reminded, usually by invertebrate palaeontologists or those scientists that specialise in studying micro-fossils, about the varied and diverse fossils of the Proterozoic Eon and the early part of the Phanerozoic (the eon of visible life).  Today, we would like to focus on one group of highly significant fossils from the Paleoproterozoic onwards, stromatolites.

Extant Colonies of Cyanobacteria (Shark Bay, Western Australia)

Stromatolites at Shark Bay (Western Australia)

Stromatolite structures exposed at low tide (Shark Bay)

Picture Credit: sharkbay.org

What is a Stromatolite?

The term stromatolite means “layered rock”, these are solid, rocky structures created by the activity of colonies of single-celled bacteria, mostly cyanobacteria, which were formerly known as blue-green algae.  The bacteria live in mats at the top of the structure and they are very primitive organisms, whose fossil record dates back as far as 3.7 billion years, possibly (see note below*).  Cyanobacteria are classified as prokaryotes, that is, they lack a nucleus and although regarded as “simple” forms of life, they were ultimately responsible for one of the most significant changes to our planet that permitted more complex life to evolve.  Stromatolites photosynthesise, they use the sun’s energy to make food.  As the stromatolites absorb sunlight they are able to break the chemical bonds in water releasing oxygen.  At first, this free oxygen, reacted with the iron rich water to create iron oxides (rust) which formed the bands of iron ore that is mined today.  Eventually, all the iron in the water was combined with oxygen, but the stromatolites kept producing oxygen as a byproduct of photosynthesis and it was this oxygen that began to increase the concentration of O2 in the atmosphere.  This led to the Great Oxygenation Event (GOE) which increased the level of atmospheric oxygen, forming the ozone layer helping to protect the Earth from harmful cosmic rays.  The increased oxygen permitted more biological diversification and speeded up the radiation of the eukaryotes (organisms with a nucleus) and the evolution of multi-cellular lifeforms.

The cyanobacteria form structures by trapping sediment with their sticky surface coatings.  The trapped sediment reacts to calcium carbonate in the water to form limestone.  These limestone deposits build up extremely slowly, it has been calculated that one centimetre of structure takes around 25 years to be laid down.

Shark Bay – The Most Westerly Point of Australia

The photograph above, shows a view of Shark Bay, the most westerly point of Australia, one of the few places in the world where hypersaline conditions occur to permit the unrestricted growth of the cyanobacteria colonies.  The stromatolites are found around the shallows of Hamelin Pool, which is located in the southern part of the bay area.  Around 5,000 years ago, a huge bank of seagrass called the Fauré Sill began to impede the tidal flow into the bay, this led to a build up of salt in the water.  The hypersaline conditions prevent most other types of marine animal from surviving, so the cyanobacteria have essentially, no predators.  This area is one of the planet’s best examples of a living analogue for the study of life prior to the Cambrian faunal explosion.  This part of Western Australia’s coastline has been granted UNESCO World Heritage status.

A Cross section of a Stromatolite Colony Preserved in the Fossil Record

A stromatolite fossil

The layered structure of the stromatolite colony can be made out in this fossil.

In the rock record, stromatolites can be recognised by characteristic laminar structures, (layers).  This is a cross section of a fossilised columnar stromatolite, it is very similar to those structures found in Shark Bay.

*Back in the early autumn of 2016, Everything Dinosaur published an article about some new research that suggests cyanobacteria colonies could have existed some 3, 700 million years ago.  To read our article on this recently published scientific paper: Ancient Microbial Structures 3.7 Billion Years Old

Article about the Great Oxygenation Event (GOE): Fossilised Bacteria Shed Light on Life Before Oxygen

Our thanks to all the cyanobacteria for helping to create the conditions to permit more complex life to evolve.

Ginkgo “Living Fossil” Has Remarkable Genome Sequenced

The Genome of the Ginkgo Reveals Secret of Success

A team of international scientists writing in the open-access journal “GigaScience”, have published a paper that maps the genome of a “living fossil” – the Ginkgo tree.  The extant Ginkgo (Ginkgo biloba), is the only representative of a division of the Plantae Kingdom called the Ginkgophyta.  Native to China, this slow-growing tree with its distinctive fan-shaped leaves has a fossil record that dates back to the Permian.  Also called the Maidenhair tree, Ginkgo biloba is the only living species of a once diverse and widespread group that thrived during the Mesozoic.  The evolutionary origins of the Ginkgophyta are unclear, with the huge genome of G. biloba mapped, it may be possible to trace the ancestry of this enigmatic plant.

The Genome of the “Living Fossil” Ginkgo Biloba has been Mapped

A Ginkgo biloba tree.

A small Ginkgo tree (G. biloba). The genome of Ginkgo biloba has been mapped.

Picture Credit: Everything Dinosaur

What is a Genome?

A genome is a complete set of genetic instructions required to build an organism, allow it to grow, develop and function properly.  The instructions are comprised of DNA (Deoxyribonucleic acid), which itself consists of four nucleotide bases adenine, thymine, cytosine and guanine (plus other materials that make up the DNA molecule such as phosphate and sugars).  The DNA is contained in chromosomes, which are found in the nucleus of most cells. The four nucleotides are arranged in pairs, adenine binds to thymine and cytosine unites with guanine.  The gene is the unit of inheritance, sections of the DNA consisting of an arrangement of the four base pairs make up a single gene and it is this gene that provides the instructions to build and maintain the organism.

Each organism has a unique genome and the length of these genetic instructions varies.  For example, the human genome is comprised of around 3.2 billion base pairs, if the genome of H. sapiens was printed out and put into paperback books, the stack of books would be over sixty metres tall, about as high as the monument to the Great Fire of London adjacent to London Bridge.  However, the Ginkgo has a much bigger genome, consisting of approximately 10.6 billion base pairs.  If the genome of G. biloba was printed into paperback form, the stack of books would reach over 200 metres high, that’s as tall as the giant cooling towers of the Fidlers Ferry Power station that dominates the Cheshire landscape.

The Human Genome Compared to the Much Larger Genome of Ginkgo biloba

Human genome compared to the Ginkgo genome.

If the human genome and the Ginkgo genome were printed as paperbacks, the tower of books representing the Ginkgo genome would be more than three times higher.

Picture Credit: Everything Dinosaur

In the picture above, the human genome if printed out into paperback books, would make a stack some 62 metres tall.  The much larger genome of G. biloba would make a tower of books over 200 metres high.  A Brachiosaurus is shown for scale.

The Extraordinary Biology of G. biloba

The research team, which included members of the Chinese Academy of Sciences and scientists from Zhejiang University, are trying to find out why individual trees can live so long and how they overcome insect and fungi attacks.  The Ginkgo genome mapping study is part of a much larger research project studying plant defences against pathogens.  This investigation will help palaeobotanists to better understand the evolutionary history of the Ginkgophyta and how they relate (phylogeny) to other plant groups.

Professor Yunpeng Zhao (Zhejiang University), one of the authors of the scientific paper commented:

“Ginkgo represents one of the five living groups of seed plants, and has no living relatives.  Such a genome fills a major phylogenetic gap of land plants, and provides key genetic resources to address evolutionary questions like phylogenetic relationships of gymnosperm lineages, evolution of genome and genes in land plants, innovation of developmental traits, evolution of sex as well as history of demography and distribution, resistance and conservation of the Ginkgo.”

Fossilised Ginkgo Leaves (Jurassic)

The carbonised fossil leaves of a Jurassic Ginkgo tree.

Ginkgo fossil leaves.

Picture Credit: Everything Dinosaur

A Very Resilient Plant

The resilience of the Ginkgo has fascinated botanists.  It has survived dramatic climate change including mini Ice Ages in its native China and Ginkgo trees in the Japanese city of Hiroshima were one of the few organisms to survive the atom bomb blast and resulting radiation, the oldest recorded individual tree germinated back in the Bronze Age.

Ginkgo trees are also able to fend off attacks from insects, bacteria and fungi.  The leaves contain an arsenal of complex chemicals that provide an effective defence.  To better understand the Ginkgo’s defensive systems, the authors analysed the repertoire of genes present in the genome that are known to play a role in the defence of the plant.  An initial analysis of the tree’s more than 40,000 predicted genes showed extensive expansion of gene families that provide for a wide range of defensive mechanisms.

Genes that enable resistance against pathogens are often duplicated.  In addition, Ginkgo trees have an extra weapon in their battle against Arthropods.  As well as having their own array of insecticides within their leaves, they also defend themselves against attack by releasing volatile organic compounds that specifically attract enemies of plant-eating insects.

The term “living fossil” is not one readily used by scientists.  It implies that a species has survived unchanged of millennia.  This is not true, the fossilised leaves preserved in Mesozoic and Cenozoic strata represent a wide variety of genera, but the tree’s basic body plan, its design has remained relatively unchanged for millions of years.

This new data, indicating that the Ginkgo has a formidable array of weaponry to keep it safe from harm, defence measures that seem to have come about as the genes were duplicated, might be linked to the plant’s remarkable resilience.  By undertaking a study of the Ginkgo and its genome, scientists may find useful pointers to assist them in helping to produce more robust crops that can resist diseases and pests.

The CollectA Ginkgo biloba Model

CollectA added a twenty-five centimetre high model of a Ginkgo tree into their “Prehistoric Life Collection” a couple of years ago.  This replica works well with the 1:20 scale range of prehistoric animal models and is very useful when creating realistic prehistoric scenes and dioramas.

The CollectA Prehistoric Life Ginkgo biloba Model

 CollectA Ginkgo biloba model.

The CollectA Ginkgo biloba tree model.

Picture Credit: Everything Dinosaur

To view the CollectA Ginkgo biloba replica and the other scale models in this range: CollectA Scale Models and Replicas

Appreciating Dunkleosteus

Dunkleosteus Exhibit at the Naturmuseum Senckenberg

At the Naturmuseum Senckenberg (Frankfurt, Germany), visitors are treated to a spectacular gallery featuring that most diverse group of vertebrates, the fish.   Fans of Palaeozoic fossils can see several specimens on display, including a beautiful Dunkleosteus exhibit.

The Anterior Portion of Dunkleosteus on Display

Dunkleosteus on display.

The spectacular Dunkleosteus exhibit.

Picture Credit: Everything Dinosaur

Greeting you at the gallery entrance area is a cast of the plated skull and jaws of the giant Devonian predator Dunkleosteus.  It certainly is a most impressive sight.  Sharp-eyed readers can spot the John Sibbick illustration that can be seen behind the replica skull with its shear-like jaws.  In the background part of the fossil fish display can be seen.  It features a life-size model of a Coelacanth (Latimeria).

Standing Guard at the Fish Gallery Entrance – Dunkleosteus

A Dunkleosteus exhibit.

A Dunkleosteus cast on display.

Picture Credit: Everything Dinosaur

A Powerful Placoderm

Dunkleosteus was a huge, prehistoric fish with an armoured head made up of several bony plates that covered over thirty percent of the entire animal’s length. Larger specimens had dermal armour that was up to five centimetres thick.  The Placoderms (armoured fish); evolved in the Silurian period from ancestors that had no teeth, instead this group of fish developed a pair of extremely sharp bony plates that hung from the top jaw, the edges of the lower jaw were also bony and as sharp as a razor.  The jaws could be slammed together like a pair of self-sharpening shears.  Dr John Newberry formally named and scientifically described this apex predator in 1873.  The genus name honours the famous American palaeontologist Dr David Dunkle of the Cleveland Museum of Natural History.

As for size, a number of estimates have been published.  The Everything Dinosaur fact sheet sent out with Dunkleosteus model purchases suggests a maximum length of about nine to ten metres, with a maximum body mass of around four tonnes.

Visit to the Senckenberg Natural History Museum

The Senckenberg Natural History Museum (Naturmuseum Senckenberg)

When in Frankfurt, take the opportunity to visit one of the largest natural history museums in Germany, the Naturmuseum Senckenberg (Senckenberg Natural History Museum).  Team members at Everything Dinosaur did just that, visiting the museum just prior to the commencement of a major refurbishment programme.  The spacious dinosaur gallery is perhaps, the most popular gallery in the museum and it is certainly worth a look around, but in addition, there are plenty of other gems to spot amongst the extensive collection of The Senckenberg Research Institute.

Tyrannosaurus rex Greets Visitors to the Naturmuseum Senckenberg

T. rex replica outside the Frankfurt museum.

A well-known Frankfurt landmark. The T. rex outside the Naturmuseum Senckenberg .

Picture Credit: Everything Dinosaur

The Dinosaur Gallery

With a life-size replica of T. rex to be found opposite the main entrance, visitors to the museum will not be surprised to discover that a cast of Tyrannosaurus rex can be found in the ground floor dinosaur gallery.  The near forty-foot long replica positioned on a landscaped area over the road from the entrance to the museum, is in very good condition, given the amount of attention the Frankfurt T. rex was getting from young dinosaur fans who were delighted to get up close to the statue and run between the Theropod’s giant legs.

A Cast of a Tyrannosaurus rex Skeleton in the Dinosaur Gallery

T. rex skeleton at the Frankfurt Natural History Museum

The museum’s dinosaur gallery. Naturmuseum Senckenberg

Picture Credit: Everything Dinosaur

The Dinosaur Gallery

Although the gallery is quite large and all the life-size dinosaurs that occupy the floor space are mounted on raised platforms, visiting the gallery later in the afternoon, affords the visitor the best views as towards closing time the galleries are much less busy.

For us, a highlight of the dinosaur gallery was being able to view the marvellous Bob Nicholls replica of Psittacosaurus, the dinosaur featured in a recently published scientific paper that examined the idea of counter shading in forest dwelling dinosaurs.  This beautiful model demonstrates how our views about the appearance of dinosaurs has changed.  Contrast, for example, Bob’s remarkable replica with some of the painted images of dinosaurs that occupy the walls of the dinosaur gallery.

The Life-size Psittacosaurus Replica on Display

Life-size Psittacosaurus replica.

A model of the dinosaur called Psittacosaurus.

Picture Credit: Everything Dinosaur

The beautifully preserved fossil Psittacosaurus specimen that was used in the recent study into dinosaur colouration can be found in the Senckenberg Research Institute’s vertebrate fossil collection.  The fossil probably came from the Yixian Formation of Liaoning Province (north-eastern China), most likely from an illegal smuggling operation.  However, the specimen was purchased by the Frankfurt museum (see photograph below).

To read an article from Everything Dinosaur about this exciting area of research: Calculating the Colour of Psittacosaurus

A Cast of the Psittacosaurus Fossil on Display at the Museum

A Psittacosaurus fossil.

Psittacosaurus fossil on display at the Senckenberg Naturmuseum (Frankfurt).

Picture Credit: Everything Dinosaur

As well as specimens of Diplodocus, Iguanodon, Triceratops (T. prorsus) and Euoplocephalus, look out for the wall-mounted Plateosaurus and the collection of dinosaur eggs.

An Oviraptor on Display Next to Examples of Dinosaur Nests and Eggs

An Oviraptor and dinosaur eggs exhibit.

An Oviraptor and its nest.

Picture Credit: Everything Dinosaur

With many of the information panels written in both German and English, these thoughtful displays are most illuminating.

Other Museum Highlights

The mammal gallery is most impressive, look out for the Quagga display (an extinct sub-species of plains Zebra), one of just a handful of specimens in the world.  In the marsupial area, a Thylacine can be found, standing amongst its close relatives the Tasmanian Devil and the Quoll.

The Thylacine is Included in the Marsupial Mammals Display

A Thylacine on display.

A Thylacine is included in the Australian mammals part of the gallery (Senckenberg Museum).

Picture Credit: Everything Dinosaur

Spectacular Displays of Ancient and Not So Ancient Prehistoric Elephants

Large elephants on display.

Prehistoric elephants on display at the Senckenberg Museum (Frankfurt).

Picture Credit: Everything Dinosaur

Messel Oil Shales and Marine Reptiles

For the keen fossil fan, there is a substantial display of invertebrate fossils helping to get across the concept of deep time as well as explaining biostratigraphy (check out the ammonites that help to illustrate this).  An entire side gallery has been dedicated to the remarkable fossils from the Messel Oil Shales.  We suspect this part of the museum has been recently modernised, the displays were well lit and the many different types of animal and plant fossil from the Messel pits were thoughtfully showcased and grouped by Phyla and Orders.

Part of the Messel Oil Shales Gallery

Part of the Messel gallery (Senckenberg Museum).

The atmospheric Messel gallery at the Senckenberg Museum (Frankfurt).

Picture Credit: Everything Dinosaur

The marine reptile gallery was also most impressive.  There were a large number of replica fossils on display including spectacular examples of Ichthyosaurs, Placodonts, Plesiosaurs, Turtles and Nothosaurs.  Visitors to the museum also have the opportunity to view examples of giants of the sea around today with a most informative Cetacean gallery.  It was also a pleasure to see explanation panels on the evolution of the whale family along with specimens representing Basilosaurus and Ambulocetus, the Ambulocetus tying in nicely with the Messel fossils exhibit.

 An Exhibit Explaining How the Plesiosauria “Flew” Underwater

An underwater flyer (Plesiosauria).

A display explaining how marine reptiles “flew” underwater.

Picture Credit: Everything Dinosaur

One of the Displays from the Spectacular Cetacean Gallery

Ancient whales on display.

The spectacular ancient whales gallery (Senckenberg Museum).

Picture Credit: Everything Dinosaur

We look forward to learning more about the refurbishment programme for this museum and whilst we appreciate there will be some disruption during this work, we recommend this museum.  It is well worth a visit.

Staypressed theme by Themocracy