Category: Palaeontological articles

Those Plucky Placoderms

Armoured Fish Made a Significant Contribution to Vertebrate Evolution

The Placoderms were a hugely diverse and very successful group of fishes, whilst they lasted. For in terms of this groups’ persistence, in geological terms they make a relative short appearance in the history of life on Earth.  As a group the Placoderms were around for approximately sixty-five million years, not a bad innings but nothing like the longevity of other types of fish such as the sharks, rays and certain Actinistians, the Coelacanth for example.  The Placoderms, or to be more correct, the Class Placodermi first evolved in the Late Silurian and they disappear from the fossil record at the end of the Devonian Period.

Perhaps the most famous Placoderm is the giant predator Dunkleosteus.  Several species are known and with some specimens estimated to have reached lengths of around ten metres or more, at the time, (Dunkleosteus lived towards the end of the Devonian something like 370 – 360 million years ago), this fish would have been one of the largest vertebrates ever to have evolved.

Dunkleosteus – An Illustration

Fearsome marine predator of the Late Devonian.

Fearsome marine predator of the Late Devonian.

Picture Credit: Everything Dinosaur

Dunkleosteus may have looked like a typical Placoderm with its head and thorax covered in articulated armour plate, but the Placodermi, it turns out are being seen as one of the most important group of vertebrates to have existed  It is not just because they evolved into the likes of Dunkleosteus, regarded by many as the world’s first, vertebrate, super-predator, but this group of armoured fishes seems to have achieved a number of “firsts” in terms of the Chordata (animals with a spine or spine-like structure in their bodies).

Firstly, palaeontologists have found a number of fossils that suggest that early members of the Placodermi were amongst the first types of vertebrate to evolve a jaw.  Recently, Everything Dinosaur wrote a short article about a remarkable fossil discovery form China which reveals some remarkable features: A Jaw Dropping Discovery.

In addition, although the majority of Placoderms seemed to have been poor swimmers, with most of them living close to the bottom, a number of families were active and nektonic, indeed these types of fish were the first to evolve paired pelvic fins, a fishy equivalent of legs, although not connected with the spine.  Paired pelvic fins are an anatomical feature found in most types of extant fish today.

Those plucky Placoderms may have been amongst the first types of animal to develop teeth.  Recently a team of scientists from Australia and Bristol University studying fossilised remains of Placoderms from Western Australia found evidence of the first types of teeth, teeth with a structure very similar to our own.  To read more about this: The Origins of a Toothy Grin

Fossils from the same rocks (Go Go Formation) western Australia gave palaeontologists a remarkable insight into the reproductive strategies of many types of ancient fish.  One species of Placoderm, known from just a single fossil specimen represents the oldest example of a vertebrate capable of giving birth to live young (viviparity). Materpiscis attenboroughi was a small, bottom of the reef dwelling fish whose fossilised remains preserved in a limestone nodule showed evidence of an embryo and an umbilical cord.  This was evidence of internal fertilisation within the fossil record and the oldest known case of viviparity.

Materpiscis attenboroughi – A Remarkable Placoderm

Materpiscus means "Mother Fish".

Materpiscus means “Mother Fish”.

Picture Credit: Museum Victoria

The remarkable Placodermi may have just added another evolutionary “first” to their string of impressive attributes.   A scientific paper published in the journal “Nature” provides details on a fossil discovery that hints at the very first example of copulation amongst vertebrates.  The international team of researchers that led the study into the Antiarch (an-tee-arc) Placoderm called Microbrachius dicki state that this was the earliest animal known from the fossil record to stop reproducing by spawning (external fertilisation).

Professor John Long (Flinders University, South Australia), was the lead author of the academic paper.  The Professor, a renowned expert on Devonian fishes had earlier worked on Materpiscus attenboroughi.  The fossils of M. dicki are relatively common.  This small freshwater Placoderm grew to about ten centimetres in length and lived around 385 million years ago.

Professor Long Explains the Key Points of the Research

Studying Placoderms and other Devonian fish.

Studying Placoderms and other Devonian fish.

Picture Credit: Flinders University

Commenting on the research, Professor Long stated:

“We have defined the very point in evolution where the origin of internal fertilisation in all animals began.  That is a really big step.”

A close inspection of a fossil revealed that one of the Microbrachius specimens had a peculiar “L-shaped” appendage.  Further study revealed that this was the male fish’s genitalia.

The Professor pointed out:

“The male had large bony claspers, These are the grooves that they used to transfer sperm into the female”.

On the other hand, the females had a small bony structure at the rear that helped to lock the male organ in place during mating.  Constrained by the anatomy, the fish probably had to mate side by side, a sort of “square dance position” as described by the researchers.

An Illustration Showing the Proposed Mating Position of M. dicki

Mating "square dance" style.

Mating “square dance” style.

Picture Credit: Flinders University/Nature

However, copulation using this method does not seem to have stayed around for very long in these Devonian fish.  As fish evolved, they reverted back to external fertilisation (spawning), whereby male and females release sperm and eggs respectively into the water and fertilisation relies more on chance.  It took several more millions of years before the ancestors of today’s sharks and rays evolved copulation.

The Placodermi may be most famous for the likes of Dunkleosteus, but scientists are beginning to realise that these strange, armoured fish may have contributed much more to the evolution of the vertebrates than just the first, back-boned  super-predator!

How Did Huge Sauropods Manage to Get Along Together?

Dietary Niche Partitioning Amongst the Sauropoda

A team of British scientists have been tackling one of the biggest puzzles in palaeontology and a sophisticated analysis of dinosaur skull bones might just have helped them solve a mystery of gigantic proportions.  Sauropods, that group of long-necked dinosaurs that include such famous creatures as Diplodocus, Brachiosaurus and Apatosaurus (formerly known as Brontosaurus), ate vast quantities of plant material.  These huge animals with many individuals exceeding twenty metres in length and weighing many times more than a bull African elephant, would have been capable of stripping an area of vegetation, but the fossil record shows that in many parts of the world, lots of different species of Sauropod seem to have co-existed.  The scientists, a joint research team from Bristol University and the Natural History Museum (London), propose that Late Jurassic Sauropod skulls became specially adapted to help them feed on different types of plant material.  In this way, the skull morphology helped the long-necked dinosaurs divide up the available food resources between them, therefore limiting the amount of direct competition.

Previous studies had shown that in areas where lots of different species of Sauropods co-existed their body shapes and ability to angle their necks may have allowed the development of different feeding strategies with each species preferring to feed on a particular part of the flora that was available.

Proposed Sauropod Feeding Strategies

Long necks for different feeding envelopes.

Long necks for different feeding envelopes.

Picture Credit: Everything Dinosaur

In the picture above, models made by Safari Ltd help to illustrate current thinking about the feeding adaptations of members of the Sauropoda.  Diplodocids such as Diplodocus and Apatosaurus with their very long necks and relatively horizontal feeding platforms probably specialised in feeding on ferns, cycads and plants that made up the vegetative understorey.  Whilst in the middle, dinosaurs such as camarasaurids a member of a different family of Sauropods called the Macronaria could feed on a wider range of plant material, cycads and seed ferns as well as being able to strip leaves off small trees.  The dinosaur in the bottom of the picture is a member of the Brachiosauridae (Brachiosaurus).  These dinosaurs had much longer forelimbs than hindlimbs and as a result, their heads were held much higher.  These dinosaurs probably specialised in feeding from the very tops of the tallest trees, parts of the vegetative canopy not available to other plant-eating dinosaurs (unless they knocked the trees down).  The tree in the picture is an Agathis conifer, a model also made by Safari Ltd.

To view Everything Dinosaur’s range of prehistoric plant models and dinosaurs (Safari Ltd): Carnegie Collectibles and Wild Safari Dinos Models

A Detailed Model of the Skull of Camarasaurus

Camarasaurus was probably the most common Sauropod living in the western United States during the Late Jurassic.

Camarasaurus was probably the most common Sauropod living in the western United States during the Late Jurassic.

Picture Credit: David Button

A spokesperson from Everything Dinosaur commented:

“Based on counts of the fossilised bones, Camarasaurus seems to have been the most common of all the different types of Sauropod known from the Morrison Formation.  Perhaps this dinosaur was more of a “generalist” when it came to diet.  A half-way house between the long-necked diplodocids and the giraffe-like brachiosaurids.  An ability to feed on a wide variety of plants, including the tougher plants not available to the likes of Diplodocus and Apatosaurus, could have led to this particular genus of long-necked dinosaur being one of the most successful in the Late Jurassic of the western North America, to the south of the Sundance Sea.”

Building on previous studies, the British team looked specifically at the Sauropod fauna associated with the Upper Jurassic Morrison Formation of the western United States.  At least ten different species of Sauropod are known from this formation, one of the most intensely studied fossiliferous formations in the Americas.  Although the Morrison Formation deposits represent a number of habitats, some of the most famous fossil beds such as those making up the Salt Wash Member indicate that some parts of the Morrison Formation represent deposits laid down in harsh, semi-arid environments, not the sort of place where one might expect vast numbers of different types of Sauropod.  Despite the harsh conditions, the fossil record shows that lots of different Sauropods co-existed.  When the diverse faunas of modern day Africa are considered, these habitats only support one truly huge, extant species – the elephant.  So how did the Sauropods get along with each other?

Bristol University’s PhD student David Button worked in collaboration with the Natural History Museum to examine how the skulls of different long-necked dinosaurs may have been adapted to help them feed on different types of plant.  Digital reconstructions were made of the skulls of Camarasaurus and Diplodocus using data compiled from Computerised tomography (CT scans).  From this data, a biomechanical model of the Camarasaurus skull was created and then this skull was compared to an existing digital model of the Diplodocus.  Finite Element Analysis (FEA), was used to assess the stresses that each skull could take.  FEA analysis is used in engineering to calculate loads and stress bearings in complex shapes, this research showed that the box-like skull of Camarasaurus gave this dinosaur a stronger bite.  Camarasaurus could have coped with tougher vegetation than Diplodocus.  The weaker bite and more delicate skull of Diplodocus would have restricted this animal to softer plant material such as ferns.  Diplodocus could have compensated for this to some extent by using its strong neck muscles to help detach plant material through movements of the head.

David Button concluded:

“Our results show that although neither could chew, the skulls of both dinosaurs were sophisticated cropping tools.  This study indicates that differences in diet between these two dinosaurs would have allowed them to co-exist.”

The research team used a number of biomechanical measurements from other Morrison Formation Sauropods to calculate the different types of feeding adaptations, providing evidence for different diets and overall a conclusion that dietary niche partitioning did occur in the Sauropoda.

Comparing the Skulls of a Typical Camarasaurid and Diplodocid

Analysis of fossil bone helped the researchers determine the size and location of jaw muscles.

Analysis of fossil bone helped the researchers determine the size and location of jaw muscles.

Picture Credit: David Button

In the picture above, the box-like skull of Camarasaurus is shown left (a) with a typical skull of a Diplodocus (b).

Co-author of the scientific paper, which has been published in the Proceedings of the Royal Society Biology, Professor Emily Rayfield (Bristol University) stated:

“In modern animal communities differences in diet such as this, termed dietary niche partitioning, allow multiple species to co-exist by reducing competition for food.  Although, dietary niche partitioning has been suspected between Morrison Formation Sauropods based on their structural features and patterns of tooth-wear, this is the first study to provide strong, numerical, biomechanical evidence for its presence in a fossil community.”

This new research may help palaeontologists to understand more about how the Sauropoda evolved.  Sauropods from the Dashanpu Quarry region of China dating from the Middle Jurassic may also show similar adaptations over skull morphology and bite strength as reflected in the research done on the slightly later Sauropods from the Morrison Formation.

In addition, this analysis may help scientists to unravel the mechanisms responsible for supporting the high diversities of mega-herbivores found in other Mesozoic and Cenozoic animal populations, particularly those in resource limited environments.

For related articles on Sauropod feeding strategies:

Ostrich Necks Provide Clues to Sauropod Neck Flexibility

Diplodocus Feeding – a biter or a comber?

Evidence for Seasonal Migrations Amongst Camarasaurids

Dinosaur Tracks in Danger of Becoming Extinct

Cal Orck’o Dinosaur Tracks Threatened

To the north-east of the city of Sucre in central Bolivia lies one of the most remarkable fossil sites anywhere in the world. The Huellas de Dinosaurio de Cal Orck´o which translates as the “dinosaur footprints on the lime hill”.  For here, preserved on a sheer slope, are the fossilised tracks of dinosaurs, more than 5,000 individual prints, in excess of 350 trackways providing a spectacular trace fossil record of life in the Late Cretaceous some 68 million years ago.  However, extraction of material to support the local cement works could be endangering the entire site according to local conservationists.

The Spectacular Dinosaur Tracks Exposed at Cal Orck’o

View from the viewing platform from the dinosaur museum.

View from the viewing platform from the dinosaur museum.

Picture Credit: Google Maps/AFP

 Although less famous than the Lark Quarry site (Australia) and the Sauropoda tracks found in Gansu Province (China), the Bolivian site represents one of the biggest, if not the biggest collection of dinosaur footprints discovered to date.   At least eight types of dinosaur trackways have been identified.  There are the huge footprints of gigantic Titanosaurs, tracks made by some of the largest land animals that ever existed.  Many of the individual prints measure more than 100 centimetres in diameter and indicate dinosaurs around twenty metres or more in length.  There are also tracks of Ornithopods and ankylosaurids.  Meat-eaters are represented too, the largest three-toed tracks identified as having been made by Theropod dinosaurs most probably represent tracks made by abelisaurids, the nearby Parque Cretácico (Cretaceous Park) contains a number of life-size, colourful replicas of the dinosaurs that once roamed this part of Gondwanaland.

Photograph of a Typical Late Cretaceous Abelisaurid (Carnotaurus Probably)

Cretaceous Park Museum illustrates the prehistoric fauna.

Cretaceous Park Museum illustrates the prehistoric fauna.

Picture Credit: Thewanderingscott.com

 The park and viewing platforms were opened in 2006, a collaboration between a number of scientific institutions including the Natural History Museum of Basel (Switzerland) whose research teams did much to document and map the tracks between 1998 and 2003, with the support of the Bolivian Government.  Fossilised tracks had been found by cement industry workers and quarry men for many years before the discovery in 1994 of the extensive trackways.  The cliff site and the nearby Cretaceous Park attract in the region of 120,000 tourists each year.

However, the nearby cement factory could be endangering the fossilised footprints as the quarrying of limestone takes place nearby.  The quarry work and frequent dynamiting of rock faces to expose new material could be undermining the entire site and making the sixty-eight million year old fossils in danger of collapse.

Elizabeth Baldivieso, the administrator of Parque Cretácico stated:

“The cliff has been quite affected by the many years of extraction of raw material.”

The regional Tourism and Cultural Secretary, Juan Jose Padilla disagrees, referring to Elizabeth Baldivieso’s description as “somewhat alarmist”.  The cement company, Fancesa jointly owned by a local university, the city and regional administrators has vowed to protect the site.

Pointing Out a Set of Dinosaur Tracks on the Near Vertical Surface
Dinosaur tracks on the near vertical cliff face.

Dinosaur tracks on the near vertical cliff face.

Picture Credit: Google Maps/AFP

The dinosaur tracks appear to indicate that these ancient creatures were climbing an almost sheer vertical cliff face.  However, back some 68 million years ago, the landscape was flat and muddy.  Over time plate movements pushed up the floodplain creating the near vertical trackways which stretch for around fifteen hundred metres or so.

This location was proposed as a UNESCO World Heritage site in 2009, but the cement company opposed the application and it was eventually turned down.  Campaigners are hoping to re-apply for UNESCO World Heritage status in 2015.  This would provide much greater protection to the fossil trackways and we at Everything Dinosaur wish the Bolivian Government and conservationists every success with the re-submission.

To read an article written by Everything Dinosaur about the discovery of some Early Cretaceous dinosaur footprints in Bolivia: Farmer Describes Dinosaur Tracks to Scientists

From Dinosaur Arms to the Wings of Birds

New Study Helps to Explain How Dinosaurs Got their Wings

Most scientists now agree the feathers originated in the Dinosauria and that Aves (birds) are descendants from a group of bipedal, very bird-like dinosaurs that make up a portion of a larger group of dinosaurs known as the Theropoda.  In essence, the birds we know today evolved from dinosaurs (specifically the Maniraptora).  However, despite a lot of fossil evidence to indicate that the birds are closely related to and descended from the Dinosauria there have been one or two areas that have led to some confusion.  Take for example, the wrist bones.  The numerous wrist bones in dinosaurs and their relatively immobile wrists evolved over time into the highly flexible wrists with fewer bones that scientists see today in living birds.  The wrist bones in birds helps to manage the forces involved in the movements of the wing in flight.  They also permit the wings to be folded back when the bird is not flying, so how the wrist bones of dinosaurs evolved into the specialised and highly modified wrist bones of birds has been the subject of much debate.

The Evolution of a Wrist Designed for a Wing

The evolution of a wrist bone adapted to flight.

The evolution of a wrist bone adapted to flight.

Picture Credit: Davide Bonnadonna

A new study by a team of scientists based at the Universidae de Chile (University of Chile), Santiago, Chile and published in the academic journal PLOS Biology may have solved this palaeontological puzzle.

Nine into Four Does Go

Let’s start with a very simple explanation of the problem.  Scientists studying living species, in this case birds and specifically ducks, chickens, lapwings, finches and budgerigars that were used in this study, can examine in minute detail the living organism.  They can also study embryos to see how the bones in the wrist are formed.  The scientists can also study the wrist bones and embryos of reptiles such as caiman to provide data on the wrist bones and embryonic growth of other types of Archosaurs.  The Archosauria is the Division of Reptilia that contains the dinosaurs and crocodiles, it is from the Archosaurs that the birds evolved.  These scientists can see how the anatomy of an animal develops.  Techniques such as cell and molecular biology studies can reveal all sorts of information with regards to how the wrists of extant (living organisms) form.  Palaeontologists, on the other hand, (no pun intended) only have a very incomplete fossil record to study.  So scientists are using different data sources to study wrist bone evolution.

Research to help identify the wrist bones in dinosaurs and the corresponding bones in the wrists of birds draws data from two radically different sources:

  • cell biology, extant organisms and embryology
  • fossils of birds, fossils of dinosaurs, studies of the bones of extinct animals

This new study shows how the modern bird wrist with its four bones, arranged in an approximate square shape corresponds to the nine bones found in non-avian dinosaurs.  The team have looked at how dinosaur wrists evolved and report on previously undetected evolutionary processes including loss, fusion and in one case, a re-evolution of a bone once lost in the Dinosauria.

A Critical Advance in Understanding

This new study effectively combined these two areas of research.  The laboratory run by Alexander Vargas (University of Chile) and lead author of the study, developed a new method of looking at specific proteins in the embryos and produced three-dimensional maps to demonstrate how the wrist bones formed.  This new method has been named whole-mount immunostaining.  It allows scientists to observe skeletal development in embryos much better than before.  At the same time, the research team re-examined the fossils of dinosaurs and prehistoric birds in a bid to tie the two strands of research together.

The Semilunate Bone

Back in the 1960′s the palaeontologist John Ostrom, re-ignited the bird/dinosaurs debate by proposing that fearsome, sickle-clawed predators such as Deinonychus (D. antirrhopus) were agile, active animals and very bird-like.  He proposed that the semilunate bone, one of the four bones making up the square-shaped arrangement of bones in a modern bird’s wrist had actually formed from the fusing of two bones present in dinosaur fossils, such as those bones found in the wrists of dinosaurs like Deinonychus and its relatives.  This new technique, confirms that Ostrom was right.

Deinonychus Part of the Dinosaurs to Birds Story

A fearsome Deinonychus dinosaur

A fearsome Deinonychus dinosaur

Picture Credit: Everything Dinosaur

Whole-mount immunostaining and the mapping of cartilage formation and proteins in the embryos of birds, allowed the scientists to confirm that the semilunate in Aves does form from as two separate cartilages which fuse and ossify into a single bone, proving that Ostrom was very probably on the right track nearly fifty years ago.

Dr. Vargas explained:

“These findings eliminate persistent doubts that existed over exactly how the bones of the wrist evolved and iron out arguments about wrist development being incompatible with birds originating from dinosaurs.”

This research has helped scientists to work out how the nine bones found in the wrists of some Theropod dinosaurs gradually evolved into the four bones seen in modern birds.  In addition, this study produced a surprise, a result that was not expected.  A small bone present in the wrists of a group of dinosaurs known as the Sauropoda, disappeared in the bipedal Theropods, but re-evolved when some Theropods began to fly.

Sauropods and Theropod dinosaurs are closely related.  They represent the two types of dinosaur that make up the Saurischia (lizard-hipped dinosaurs).  Sauropods walked on all fours and had a small bone in their wrist called the pisiform that had a function in their four-legged, quadrupedal stance.  Theropod dinosaurs were essentially bipeds (walking on their hind limbs).  The arms of these dinosaurs were no longer used for walking but for catching and subduing prey.  Over millions of years the pisiform bone was lost from the wrists of the two-legged Theropods.  However, the authors of this study discovered that the pisiform had reappeared in early birds, probably as an adaptation for flight, where this small wrist bone permits the transmission of force on the down-stroke of a wing beat whilst restricting flexibility on the up-stroke phase of a wing beat.

The Evolution of the Wrist from Dinosaurs to Birds

From

From dinosaurs to birds ( Dinosauria – Theropoda – Maniraptora – Aves)

Picture Credit: PLOS Biology

The chart shows the colour coded bones and how they changed over time.  For example, the pisiform bone (red) can be found in the Early Jurassic Ornithopod Heterodontosaurus (not a Theropod) and in the Late Triassic Theropod Coelophysis.  This bone is lost in later Theropods such as Allosaurus and Guanlong but evolves again in primitive birds such as Sapeornis.  Sapeornis was about the size of a seagull, it seems to have been a strong flyer.  It lived during the Early Cretaceous.

The colour coded chart also shows how the square-shaped arrangement of bones in a modern bird such as the chicken evolved, with the fusion of the distal carpal 1 and the distal carpal 2 bones (yellow and green).  In the Maniraptoran Falcarius, a member of the Therizinosauroidea and not a direct ancestor of birds, these two bones are distinct.  However, in those Maniraptorans believed to be more closely related to the birds, indeed, the ancestors of Aves, dinosaurs such as Khaan, Deinonychus and Yixianosaurus these two carpals become fused to form the semilunate found in the wrists of modern birds.

New Research Suggests Multicellular Life Started Earlier

Evidence Suggests Multicellular Life 60 Million Years Earlier than Previously Thought

Researchers from the Virginia Tech College of Science in collaboration with counterparts from the Chinese Academy of Sciences have published new data on one of the most fundamental and significant changes that occurred in the history of life on our planet.  At some time during the Proterozoic Eon, multicellular life forms evolved.  These organisms evolved from single-celled entities and in a paper published in the academic journal “Nature”, the researchers propose that multicellular life forms evolved some sixty million years earlier than previously thought.

The team suggest that they have found fossil evidence of complex multicellularity in strata dating from around 600 million years ago, although microscopic fossils are known in Precambrian strata from several locations around the world (Australia, South Africa as well as China), this new research is helping to clarify some long-standing interpretations of micro-fossils.

Professor of Geobiology at the Virginia Tech College of Science, Shuhai Xiao explained the significance of this new fossil discovery:

“This opens up a new door for us to shine some light on the timing and evolutionary steps that were taken by multicellular organisms that would eventually go on to dominate the Earth in a very visible way.  Fossils similar to the ones in this study have been interpreted previously as bacteria, single-cell eukaryotes, algae and transitional forms related to modern animals such as sponges, sea anemones, or bilaterally symmetrical animals.  This paper lets us put aside some of those interpretations.”

It has long been known that simple, multicellular organisms evolved before more complex ones, such as red algae and sponges.  If a biological hierarchy existed (and most scientists believe that this is the case), then at some point in the past, single-celled organisms began to evolve into much larger, more complicated multicellular organisms.  The trouble is, with the paucity of the fossil record and the difficulties involved in interpreting Ediacaran fauna there is a lot of debate amongst biologists and palaeontologists as to when the solo living cells began to fuse into more cohesive, complex forms.

Evidence of Complex Multicellular Organisms from the Doushantuo Formation

Evidence of multicellular structures in 600 million year old rocks.

Evidence of multicellular structures in 600 million year old rocks.

Picture Credit: Virginia Tech College of Science

The researchers examined microscopic samples of phosphorite rocks from the Doushantuo Formation in Guizhou Province (south, central China).  This formation represents extensive marine sediments that were deposited from around 635 million years ago to around 550 million years ago.  They preserve a unique record of microscopic life (Metazoan life – animals) that existed during the Ediacaran geological period, the period in Earth’s history defined as immediately before the Cambrian and that marks the end of the Precambrian or the Proterozoic Eon.

What is an Eukaryote?

The scientists were able to identify a number of three-dimensional multicellular fossils that show signs of cell-to-cell adhesion, cells potentially performing different functions and programmed cell death.  These qualities are all found in complex eukaryotes, the organisms that dominate visible life on Earth to day, the fungi, animals and plants.  Eukaryotes range in size from single-celled amoebas to giant sequoias and blue whales.  We (H. sapiens) belong to the Domain Eukarya.   Eukaryote cells are complex, they have a distinct nucleus surrounded by a membrane.  The nucleus contains most of the genetic material.  The nucleus itself is a specialised area of the cell, it is referred to as an organelle.  Eukaryote cells have a number of specialised areas within them (other organelles as well as a nucleus).

Professor Xiao and his colleagues admit that these are not the first multicellular fossils found, nor are they probably the oldest, but the exceptional preservation permits the researchers to draw certain conclusions.  For example, it had been previously thought that these multicellular characteristics had started to develop much later in Earth’s history, perhaps as recently as 545 million years ago, a time shortly before the great Cambrian explosion.

What was the Cambrian Explosion?

The Cambrian explosion refers to the period in Earth’s history around 545 to 542 million years ago when there was a sudden burst of evolution as recorded by extensive fossil discoveries.  A wide variety of organisms, especially those with hard, mineralised body parts first appear.

This new research may help to shed some light on when multicellularity arose, but the reasons for this significant change remain unclear.  The complex multicellularity shown in these Chinese fossils is not consistent with that seen in simpler forms such as bacteria.  The scientists note, that whilst some earlier theories can be disregarded these three-dimensional structures can be interpreted in many ways and more research is required to construct the complete life cycle of these ancient organisms.

In summary, these fossils may show some affinity towards the stem-groups that led to the first members of the Kingdoms we know as Animalia, Fungi and Plantae, but much more data is needed to establish a more thorough phylogenetic relationship.

Spinosaurus “Four Legs are Better than Two”?

Spinosaurus – Steps into the Spotlight (Once Again)

And so, the long awaited paper that re-evaluates the fossil data on the Spinosaurus genus and specifically S. aegyptiacus was published in the academic journal “Science” yesterday.  Time to open a new chapter on this, one of the most enigmatic, mysterious and bizarre of all the known Theropoda.  Since the paper’s submission in the summer, there has been a lot of debate in scientific circles with regards to what this new study will show.  The paper’s title “Semi-aquatic Adaptations in a Giant Predatory Dinosaur”, is almost an understatement, when this is contrasted with the lurid headlines we have seen from a large number of media outlets.

Re-examining What We Thought We Knew About Spinosaurus

In very brief summary, the dedicated team of international researchers have re-assessed the known fossil material on Spinosaurus.  They have been able to track down the location in Morocco from which a number of Spinosaurus bones were excavated and sold via a fossil dealer.  The team have then re-examined this site and found further material.  Their efforts has led to a considerable re-think in terms of what this animal looked like and how it moved.  This new study interprets Spinosaurus as a sixteen metre plus dinosaur, that considered itself more at home in the water than on land.  Although capable of terrestrial locomotion, unlike every other large Theropod, a new rendering sees Spinosaurus as an obligate quadruped.  Here is a meat-eating dinosaur that walked on all fours.

A Semi-Aquatic Obligate Quadruped – Spinosaurus

Very much at home in the water.

Very much at home in the water.

Picture Credit: Davide Bonnadonna, Nizar Ibrahim, Simone Maganuco

In the picture above, a web-footed Spinosaurus pursues a prehistoric swordfish, known as Onchopristis.  Earlier studies and research based on other members of the Spinosauridae suggest that fish may have made up a substantial proportion of their diet.  Instead of perching on the river bank, attempting to claw fish out of the water like some form of giant, prehistoric Grizzly bear, an ecological niche trumpeted by ourselves to the CGI team helping with the rendering of Spinosaurus for an episode of the BBC television series “Planet Dinosaur” back in 2011, this latest interpretation goes a lot further.

Beyond “Planet Dinosaur” – The Transformation of Spinosaurus aegyptiacus

From paddler to swimming the "evolving" image of Spinosaurus.

From paddler to swimming the “evolving” image of Spinosaurus.

Picture Credit: BBC

Building Up a New Picture

Having re-visited what records and remaining photographs that exist of the original Stromer material excavated from the Western desert of Egypt around a 100 years ago, the dedicated research team then set about mapping previously known Moroccan finds including jaw bone fossils that had been discovered in the mid 197o’s.  To this eclectic mix they added information obtained from the fossils from the newly “rediscovered” Moroccan site, which itself makes up what is now known as the neotype for Spinosaurus aegyptiacus.  A neotype is a specimen that is deemed to represent a species in the absence of the holotype material that has either been lost or destroyed.  Add a pinch of material not known from the Spinosaurus genus but described from related animals baryonychids, spinosaurids and so forth, combined with a soupcon of inferred parts of the anatomy as the bones are not known at all in the fossil record and you have a “composite” view of the animal.

The Latest Interpretation of Spinosaurus (S. aegyptiacus)

Life-size reconstruction and supplemental figure

Life-size reconstruction and supplemental figure

Picture Credit: Davide Bonnadonna (top) Ibrahim et al (bottom)

The illustration (top), depicts Spinosaurus as a dinosaur that walked on four legs, in this new study the centre of gravity is positioned further forward, the pelvic girdle is estimated to have been much smaller and the hind limbs with their robust but very short femur  reflect the adaptations of a paddler more than that of a bipedal walker.

The picture below, referred to by a colleague as the “Spinosaurus colour chart” is a figure from the scientific paper’s supplementary data.  The colour coded bones illustrate the composite nature of this digital reconstruction.

The “Spinosaurus Colour Chart” Key

RED = the neotype fossils (FSAC-KK 11888)

ORANGE = the original bones from Stromer’s expeditions

YELLOW = isolated fossil material ascribed to Spinosaurus spp. from the same geological Formation as the neotype (Kem Kem Formation)

GREEN = scaled up bones derived from better known spinosaurids

BLUE = additions to help complete the skeleton based on no known fossils but derived from adjacent bones in the digital restoration

We at Everything Dinosaur applaud the efforts of the international team responsible for this new reconstruction.  A revaluation of the known Spinosaurus fossil material has been long overdue and this is the first time that palaeontologists have been able to relocate the bones from a private fossil collection to the actual site where they were excavated.  We commend the team for their perseverance.

Taking a Different Perspective

However, as with all good science, a number of counterpoints have already been made.

Scott Hartman, addresses these concerns in his web log: There’s Something Fishy About Spinosaurus

Scott, with a background in anatomy, and an expert in skeletal reconstructions, makes a number of excellent points in his article.

The dinosaur referred to as Spinosaurus aegyptiacus was one of the last of the Spinosauridae.  There is a British connection to this story.  One of the spinosaurids used in the comparative study was Baryonyx (B. walkeri).  When this dinosaur, whose bones were found in a Surrey clay pit, was formally described back in 1986 it was depicted as a semi-aquatic dinosaur, fish scales found in the body cavity suggested that fish made up at least a portion of its diet.

Commenting on this new research, Dean Lomax, (Honorary Visiting Scientist: School of Earth, Atmospheric and Environmental Sciences, The University of Manchester) and author of the recently published “Dinosaurs of the British Isles” which includes extensive information on the Baryonyx fossil finds, stated:

“The new discovery is very interesting as it potentially confirms what had been suspected for quite some time, that Spinosaurus lived a semi-aquatic lifestyle.”

For further information on the book “Dinosaurs of the British Isles” by Dean Lomax and Nobumichi Tamura, which includes some fantastic skeletal drawings by Scott Hartman visit: Siri Scientific Press

This new paper, marks a new chapter in the story of Spinosaurus, but it’s not the end of the story that’s for sure.  Ironically, although Stromer originally depicted S. aegypticacus as a biped, we recall that in the distant past (the 1970′s), Spinosaurus had previously been thought of as a dinosaur that walked on all fours.

An Illustration of Spinosaurus from 1976

Spinosaurus as a terrestrial quadruped.

Spinosaurus as a terrestrial quadruped.

Picture Credit: Giovanni Caselli (from the book “The Evolution and the Ecology of the Dinosaurs” by L. B. Halstead)

We suspect there are going to be a few more twists and turns in the Spinosaurus story.

Fossil Damaged at Dinosaur National Monument (Utah)

Dinosaur Fossil Damaged and a Piece Stolen from Dinosaur National Monument

It once was a near perfect fossil of the upper arm bone of a Sauropod dinosaur, now it is broken and damaged with a fist-sized chunk missing.  Rangers at the Dinosaur National Monument in Utah have reported the vandalism and theft of part of a humerus.  It is extremely sad to have to report on yet another theft of a dinosaur fossil, officials at the Monument are appealing to members of the public to help them trace the culprit(s).

The Damaged Portion of the Dinosaur Fossilised Bone

The damaged dinosaur bone.

The damaged dinosaur bone.

Picture Credit: National Parks Service

The picture above shows the missing section of the dinosaur bone, the bone seems to have been deliberately smashed.

The Dinosaur National Monument is well-named.  Managed by the United States Department of the Interior National Parks Service, the park covers some 85,000 hectares and overlies the border between the states of Colorado and Utah (although the main dinosaur quarry site is in Utah, close to the town of Jenson).  The Monument is world famous for its amazing collection of dinosaur and other vertebrate fossils which date from the Upper Jurassic.  At least ten different types of dinosaur genera are known from the Morrison Formation exposures.  The Utah sequence represents high energy riverine deposits and on show at the visitor centre is a sandstone “wall” that reveals some 1,500 dinosaur bones.  Dinosaurs were probably swept away and drowned during floods.  At bends in the river as the current slowed down, so debris, including the carcases of dinosaurs was deposited.  The Dinosaur National Monument preserves these “log jams” of dinosaur bones.  Genera associated with the Monument include Camarasaurus, Allosaurus, Stegosaurus, Apatosaurus, Diplodocus and Dryosaurus.

On Tuesday, September 2nd , a park ranger was leading a tour party along the Fossil Discovery Trail when the damaged bone was noticed.  The vandalism and theft probably took place sometime between the Monday guided walk along the Fossil Discovery Trial and Tuesday morning.  The Fossil Discovery Trail is a 1.2 mile trail that runs between the Quarry Visitor Centre and the Quarry Exhibit Hall where the famous sandstone “wall”of dinosaur bones that we described above, is located.  The trail is unique as it is one of the few places where visitors can hike to see and touch dinosaur fossils and fragments in situ.  It allows visitors to experience what it may have been like for palaeontologist Earl Douglass (Carnegie Museum of Natural History), when he discovered the first fossils in what is now the Monument.

A spokes person from Everything Dinosaur commented:

“This is such a shame as the Dinosaur National Monument is going to celebrate its centenary next year and to have fossils damaged and stolen is deeply upsetting.  Although the fossils along the trail are of limited scientific value they provide a wonderful opportunity for members of the public to get up close to real dinosaur fossils.”

The Sauropod Humerus (before and after) Photographs

Two photographs showing the fossil before and after the theft.

Two photographs showing the fossil before and after the theft.

Picture Credit: National Parks Service

The picture above shows two photographs, the picture of the humerus without the damage (left) and a close up showing the damaged portion (right).  Although our dinosaur experts cannot be certain, the bone portion in question looks like the distal end of a left humerus, probably part of a Camarasaurus.  Park officials are seeking help from the public and anyone with information regarding this theft are invited to contact staff on (435) 781-7715.  A reward of $750 USD has been put up by the Intermountain Natural History Association for information that leads to a conviction.

The Part of the Fossil Discovery Trail where the Bone was Situated

The arrow shows the position of the damaged dinosaur bone.

The arrow shows the position of the damaged dinosaur bone.

Picture Credit: National Parks Service

Everything Dinosaur would like to take this opportunity to stress that visitors to the Dinosaur National Monument are not allowed to collect/damage any fossils or rocks.  Under Federal law, all features, artifacts and resources are protected. No collection of park geological resources for commercial sale, private collections or for classroom educational purposes is permitted.  We advise all visitors to National State Parks of America to familiarise themselves with the various protection laws and polices that relate to that particular location.

A Little Detail on a Great Big Dinosaur – Dreadnoughtus

Dreadnoughtus schrani – A Dinosaur on a Massive Scale

And so the announcement came this week about the discovery of a super-sized, South American dinosaur that weighed as much as thirteen, bull African elephants.  Dreadnoughtus was so named as the huge bones (and for a change when it comes to the Titanosauria, there are quite a lot of them), reminded the scientists of the impervious super-structure of turn-of-the-Century battleships.  This was a plant-eating dinosaur that was simply too big to be vulnerable to attack from predators.  Invulnerability would have been very handy for this immense creature as this dinosaur would have been preoccupied with eating, trying to cram enough calories into its enormous digestive system to keep its house-sized body functioning.

A Dinosaur on a Massive Scale - Dreadnoughtus schrani

Huge dinosaur from southern Patagonia.

Huge dinosaur from southern Patagonia.

Picture Credit: Jennifer Hall

Many articles have already been written about this new Titanosaur, the scientific paper was published by the Nature Publishing Group on the 4th September, this paper has already received more than 20,000 page views and the story has been picked up by dozens of news outlets.  We at Everything Dinosaur, had known about this research for some time, there are more exciting titanosaurid discoveries from South America still to be announced, so this blog article hopes to recap the main points about the significance of this study and to focus on a couple of areas that may not have been covered by other media outlets.

Firstly let’s deal with the size – this is a real “elephant in the room” moment, as with all large dinosaur fossils, this seems to be the most prominent and frequently asked question – just how big was this dinosaur?

The Size and Scale of the Dinosaur Discovery

Heavier than a 737 Jet.

Heavier than a 737 Jet.

Picture Credit: Dr. Ken Lacovara

Although D. schrani may not be the very biggest of all the dinosaurs that ever existed.  It is certainly right up there, with an estimated body mass of 59,300 kilogrammes (the actual measurement was 59,291 kilogrammes but some rounding has taken place in the media).

How do Scientists Estimate the Body Mass?

This leads us to one the most important points to note about this discovery.  The international research team led by Drexel University’s Dr. Kenneth Lacovara was able to recover around 45% of the total skeleton of a single individual specimen, including cranial material (skull bones).  Most of the rear portion of the animal was excavated including a left humerus (upper arm bone) and femur (thigh bone).  These limb bones hold the key to estimating body size.  Earlier studies have shown that an analysis of the these limb bones and measurements of their circumference, corresponds to relative body mass in terrestrial quadrupeds.

Put simply, imagine weighing several different herds of cows before they are slaughtered for meat.  The cows would be of different sizes and therefore there would be some variance in total body weights.  Once the cows had met their demise, the upper arm bones and thigh bones could be collected for each animal.  The mid shaft circumference for these bones would then be measured and recorded.  A correlation would most likely be found between the mid shaft circumference measurements and the body weight recorded earlier.  For instance, bigger circumference equals a heavier animal.

This correlation provides accurate data on the body mass estimates of four-limbed, terrestrial animals that are alive today.  So the theory goes, that if it works for animals that are extant (living today), then it should also work for extinct animals such as the Dinosauria.  This correlation is extremely useful as the Sauropods and the later Titanosaurs are so different from living creatures that anatomical comparisons are just not relevant.

The preservation of these limb bones which have been found to scale with body mass, permits the scientists to make an estimate of the body mass of Dreadnoughtus schrani.  The same equation has been used to estimate the body masses of a number of other substantial dinosaurs, but none of them quite match the bulk of Dreadnoughtus.  It therefore suggests that the Dreadnoughtus schrani holotype material represents an individual titanosaurid that was much heavier than other Titanosaurs and indeed much more massive than most other Sauropods.

Dreadnoughtus Compared to Other Sauropoda (Limb Circumference Analysis)

Dreadnoughtus - the most complete skeleton of a giant titanosaurid dinosaur discovered to date.

Dreadnoughtus – the most complete skeleton of a giant titanosaurid dinosaur discovered to date.

Table Credit: Everything Dinosaur, data compiled from Nature Publishing Group and Benson et al.

Still Growing?

Astonishingly, of the two specimens found together, the largest one, the Dreadnoughtus that was estimated to be heavier than a Boeing 737 aircraft was probably not yet fully grown.  Identifying when a dinosaur reached its maximum size is a complicated business (related to indeterminate growth), however, the research team found that it was likely that this super-sized dinosaur was still growing at the time of its death.  The scapula (shoulder blade) had not fused completely to the coracoid bone.  The posteromedial margin of the coracoid foramen (small opening, located in the middle of the coracoid), was butted up against the distal portion of the shoulder blade.  Palaeontologists have cited these conditions as indicating that the individual was still growing.  A study of the humerus supports this hypothesis, the lack of lines of arrested growth indicate that this dinosaur was immature at the time of death.  Although some scientists have questioned the validity of these indicators, whatever the outcome, the larger individual of the two Dreadnoughtus specimens found to date, represents the biggest dinosaur known to science for which a robust body mass has been calculated.

Not reported by many media sources but for the record the femur length is in excess of 1.9 metres and the humerus is 1.6 metres long.

Dinosaur Fossils Found in Southern Patagonia

Another, significant point we wanted to make concerns the location of the dinosaur fossils.  Whilst Patagonia may now be synonymous with dinosaur discoveries, Argentinosaurus, Giganotosaurus et al, many of these fossils come form the northern and central parts of this vast region.  These fossils come from a relatively unexplored part of south-western Patagonia.  The fossil material was excavated from the Cerro Fortaleza Formation, an exposure on the eastern bank of the Río La Leona, (Santa Cruz Province), this is more than 750 miles (1,200 kilometres) away from the location of other major Cretaceous-aged dinosaur fossil finds.  We at Everything Dinosaur are unaware of any radiometric dating and although Campanian-aged biostratigraphical material is associated with some horizons of the Cerro Fortaleza Formation, the precise age of these fossils remains unclear.  They are between 83 million and 66 million years old, with some sources stating 77 million years of age (Campanian to Maastrichtian faunal stages).

Location of the Dreadnoughtus Quarry

The site of the fossil discovery.

The site of the fossil discovery.

Picture Credit: Map de la provincia de Santa Cruz

A Team Effort

Last but not least, the 116 fossils, some of which do show potential evidence of scavenging by Theropod dinosaurs, have been excavated, prepared and digitally mapped by a dedicated team of researchers.  This has certainly been a colossal undertaking, yes, we know the tail itself measures some thirty feet in length, (the total length of Dreadnoughtus schrani has been estimated at 26 metres) and the skull (only one fragment of which has been found) was around eighty-eight centimetres in length.  It is quite right to focus on the huge size of this member of the Titanosaur family, but we at Everything Dinosaur would like to take this opportunity to thank all the researchers for their hard work.

The first fossil was spotted during a expedition back in 2005, the femur we think. From 2005 to 2009 a series of field trips took place to excavate the two individual specimens, since then a great deal of preparatory work and fossil prep has been carried out by scientists from Drexel University, a number of graduates from this institution but also with the aid and support of the likes of the Carnegie Museum of Natural History,  the Museo Argentino de Ciencias Naturales, Argentina and Laboratorio de Paleovertebrados, Universidad Nacional de la Patagonia (also Argentina).

Even a scientist from the University of Manchester (Dr. Victoria Egerton), a lecturer in Applied Palaeontology, was involved.   Our congratulations to everyone who has participated in this amazing study, an exceedingly rare opportunity to learn about one of the largest terrestrial vertebrates that is known to science.

Walking Fish Provides Clues to the First Tetrapods

Researchers Study Living Fish to Gain Insight Into Fossil Record

Arguably one of the most significant events in the history of life on Earth occurred when the first vertebrates walked on land.  The date when types of prehistoric fish made the move to land and began the evolutionary journey that would lead to the Tetrapods keeps changing in the light of new fossil discoveries.  Tetrapods are vertebrates, this group includes the amphibians, reptiles, birds and mammals and that means, we are Tetrapods too.  One of the most important fossil discoveries in recent years, was made in a limestone quarry in Poland.  On one stone slab scientists discovered strange track-like marks about fifteen centimetres wide.  These were controversially interpreted as having been made by the limbs of an animal capable of moving around on land.  It was envisaged that whatever strange creature made these marks, it must have been more than two metres long.  This trace fossil suggests that the first animals walked on land around 400-395 million years ago, some thirty-five million years earlier than previously thought.

To read more about this Polish discovery: Clues to the First Land Animals?

A team of researchers from McGill University (Montreal, Canada), have turned to a living fish in order to gain a better understanding of the evolutionary changes that must have taken place to allow certain types of fish such as the Sarcopterygians to adapt to a more terrestrial lifestyle.  If, sometime around 400 million years ago (Lower Devonian Epoch), a group of fish began exploring terrestrial environments, the first stage on the long evolutionary journey to the Tetrapods, how did these fish do it?  What changes to their bodies and fins took place to allow them to adapt to this new habitat?  Helping to answer these questions was the aim of the research team at McGill University and to do this they turned to a living (extant) fish called Polypterus.

Little Fish Takes Part in “Ground Breaking” Experiments

A giant leap for fish-kind!

A giant leap for fish-kind!

Picture Credit: McGill University

There are ten or so species in the Polypterus genus, as far as we at Everything Dinosaur know, they are all African and freshwater fish.  Polypterus is the only vertebrate known to science that possesses lungs and is capable of breathing air but has no trachea.  These little fish have been studied for more than one hundred and fifty years, Thomas Huxley no less was involved in some of the earliest research.  He placed them in the Order Crossopterygii, now regarded as a synonym of the Sarcopterygii – although this classification has now been largely disproved.  The first successful domestic breeding programme commenced in 2005, this paved the way for laboratory studies.

The McGill team in collaboration with the University of Ottawa, studied Polypterus fish to show what might have happened when fish first attempted to walk out of the water.  These air breathing fish can “walk” on land, (really it is a bit of shuffle), but they do superficially resemble Devonian Sarcopterygians, (hence Huxley’s classification).  The scientists raised juvenile Polypterus on land for nearly a year, with an aim of revealing how these “terrestrialised” fish looked and moved when compared to Polypterus specimens raised in a more normal environment.

Project leader, Emily Standen, a former McGill University post-doctoral student stated:

“Stressful environmental conditions can often reveal otherwise cryptic anatomical and behavioural variation, a form of developmental plasticity.  We wanted to use this mechanism to see what new anatomies and behaviours we could trigger in these fish and see if they match what we know from the fossil record.”

The team discovered that these fish underwent remarkable anatomical and behavioural changes in response to their stressful environment.  These fish walked more effectively by placing their fins closer to their bodies, lifted their heads higher and kept their fins from slipping as much as fish that were raised in water.

Polypterus Showed Anatomical and Behavioural Changes

Helping to explain the evolution of Tetrapods.

Helping to explain the evolution of Tetrapods.

Picture Credit: McGill University

Fellow researcher, Trina Du (McGill University PhD student) explained:

“Anatomically, their pectoral skeleton changed to become more elongate with stronger attachments across their chest, possibly to increase support during walking and a reduced contact with the skull to potentially allow greater head or potential neck motion.”

Hans Larsson, Canada Research Chair in Macroevolution at McGill and an Associate Professor at the Redpath Museum added:

“Because many of the anatomical changes mirror the fossil record, we can hypothesise that the behavioural changes we see also reflect what may have occurred when fossil fish first walked with their fins on land.”

The “terrestrialised” Polypterus is unique and provides fresh ideas on how fossil fishes may have used their fins in a terrestrial environment and what evolutionary processes may have been involved.  Hans Larsson went onto to say that this experiment was the first example that they were aware of, that demonstrated developmental plasticity may have facilitated a large-scale evolutionary transition, by first accessing new anatomies and behaviours that could later be genetically fixed in the population by natural selection.

The study was conducted by Emily Standen, University of Ottawa, and Hans Larsson, Trina Du at McGill University and supported by the Canada Research Chairs Program, Natural Sciences and Engineering Research Council of Canada (NSERC) and Tomlinson Post-doctoral fellowship.  It has been published in the journal “Nature”.  Everything Dinosaur acknowledges the help of McGill University in the compilation of this article.

Dinosaur Footprints Damaged

Welsh Dinosaur Footprints Vandalised

They might be as much as 200 million years old but the thoughtless actions of fossil hunters have damaged a number of dinosaur footprints preserved at a site of special scientific interest (SSSI) in Wales.  A number of prints have been damaged including one that was filled with plaster of paris in a bid to make a cast and then an attempt was made to hammer the cast out of the rock.  The fossilised footprints form part of an important palaeontological site in the Vale of Glamorgan.  The prints can be found on a stretch of exposed coastline between the towns of Barry and Sully on the northern coast of the Bristol Channel, the trace fossils are the oldest known dinosaur tracks to found anywhere in the British Isles.

One of the Vandalised Fossilised Dinosaur Footprints

Three-toed dinosaur footprint with marks showing attempt to remove print from site.

Three-toed dinosaur footprint with marks showing attempt to remove print from site.

Picture Credit: Media Wales Ltd

The picture above shows one of the three-toed (tridactyl) prints with marks around it where an attempt was made to cut out the fossil from the surrounding rock.

The fossils, which are located in strata that form the Mercia Mudstone Group have been subjected to vandalism before.  Sadly, authorities and conservation bodies face a dilemma, do they permit free access to the site so that walkers can view the fossilised footprints and tracks in situ or should the trace fossils be removed and stored in a secure facility to prevent vandalism and fossil thefts?

Back in August 2012, Everything Dinosaur team members reported on the theft of footprint fossils from the same area, fortunately the fossils were recovered a few weeks later.

To read about the earlier fossil theft: Dinosaur Footprints Stolen from the Vale of Glamorgan

This new damage was discovered by South Wales archaeologist Karl-James Langford whilst he was conducting students around the SSSI.

Mr Langford, the founder of Archaeology Cymru (Archaeology Wales) stated:

“I took a group of ten students to give them the tour of the dinosaur footprints.  I could not hide my horror at the damage which had been deliberately caused.   We examined one print that had been filled with plaster of paris.  On a visit to inspect the damage with another group later that same day, somebody had deliberately tried to smash it out with a breeze block, damaging the 200 million year old print in the process.”

It has also been reported that fires had been lit around the site and rubbish left, calls were made last night to provide this extremely important fossil site with greater protection.

What’s so Special About this Location?

The mudstones exposed on this stretch of the coast running along the northern edge of the Bristol Channel were laid down towards the end of the Triassic Period (Upper Triassic – Norian to Rhaetian faunal stage), dinosaur footprint fossils from this time in Earth’s history are extremely rare and the site is one of the world’s most important in terms of recording the activities of Late Triassic dinosaurs.  This was an area of mud flats and silts leading towards the edge of a shallow tropical sea to the south-west.  Many different types of ancient reptile crossed these mud flats and their footprints and tracks were preserved.  Hundreds of individual prints have been recorded and something like sixty trackways have been mapped.  Most of the dinosaur tracks represent a small, three-toed, Theropod which has been given the ichnogenus Grallator.  An ichnogenus is a name given to an organism that has left trace fossils, usually tracks, prints or burrows.  Other types of dinosaur footprints have been recorded, including tracks representing a large meat-eater (Theropod) and a series of trails left by plant-eating Prosauropods.

Field Photograph Showing Preserved Trace Fossils at Barry (Vale of Glamorgan)

Dinosaur Tracks from the Late Triassic.

Dinosaur Tracks from the Late Triassic.

Picture Credit: Tom Sharpe (Dinosaurs of the British Isles)

The photograph above shows a number of rounded footprints and tracks.  The rounded prints are believed to have been made by a Prosauropod dinosaur.  Many of the tracks are quite difficult to spot, the best time to see them is in the evening when the low sun casts shadows on those tracks which represent natural casts.  In addition, if there has been recent rain, or a high tide many of the trackway depressions will be filled with water and this makes observing the prints much easier.

Team members at Everything Dinosaur would like to echo the comments made by a number of other organisations with regards to this damage.  It is essential that sites such as this are protected and safeguarded and we urge all readers to remember that this is a SSSI and as such it is an offence for any person or persons to intentionally or recklessly damage or destroy any of the features of special interest of an SSSI!

If any visitor to this location sees suspicious activity, such as damage to footprints, attempts to make casts or actions that could lead to the theft of a print, please alert the Countryside Council for Wales, the Geology Department of the National Museum of Wales or the Geologists’ Association South Wales Group.

Useful Contacts

For the Geology Department of the National Museum of Wales telephone +44 (0)29 2057 3213

Email: the Geologists’ Association of South Wales Group: webmaster@swga.org.uk

For the Countryside Council for Wales, try Natural Resources Wales (Mon-Fri) on 0300 065 3000

Staypressed theme by Themocracy