Category: Main Page

Max and His Drawing of the Cambrian

Max and his Anomalocaris Drawing

Our thanks to Max and his mum for sending us a wonderful thank you letter after we furnished him with twenty-two prehistoric animal fact sheets to add to his dinosaur database.  Max very kindly provided us with a drawing of a scene from the Cambrian, a geological period that lasted some fifty-four million years or so (542 to 488 million years ago).  The Cambrian marks the appearance of sophisticated marine ecosystems and a rapid radiation and diversification of marine life-forms.  It is the first geological period of the Phanerozoic Eon, an Eon that continues today (visible life).  We really appreciate Max’s illustration, it’s a super drawing of a Cambrian scene.

The Cambrian Scene Sent to Everything Dinosaur by Young Max

Life in the Cambrian by Max.

A drawing of Cambrian marine life by young Max.

Picture Credit: Max

At Everything Dinosaur we get sent lots of pictures of dinosaurs, some amazing drawings as well as snapshots of fossil finds.  We don’t get too many drawings illustrating life in the shallow seas of the world some 510 million years ago.  A special thank you to Max and his mum for sending this into us.

Featuring  Anomalocaris

The animal featured in the centre of Max’s drawing looks like an Anomalocaris.  Although, it was probably not the fastest swimmer, Anomalocaris was probably the apex predator in the shallow sea fauna represented by the fossils from the Burgess Shale of British Columbia.  At more than a seventy centimetres in length, Anomalocaris was probably the largest member of the Burgess Shale biota.

The Drawing by Max Compared to a Scientific Illustration of Anomalocaris

Anomalocaris comparison.

A comparison between a child’s drawing and a scientific illustration of Anomalocaris.

Picture Credit: Max and Everything Dinosaur

We can certainly see a resemblance between the two drawings.  It had been thought that the anomalocarids had become extinct at the end of the Cambrian, but a study of Ordovician fossils from Morocco provided a surprise for palaeontologists.   It seems these types of marine creatures, which might be the ancestors of today’s velvet worms, lived for at least thirty million years longer, and what is more, some kinds actually grew even bigger than their Cambrian counterparts.

To read more about this: Anomalocarids into the Ordovician

Everything Dinosaur enjoys receiving drawings such as the one Max sent into us, especially ones that illustrate scenes from very dramatic times in the evolution of life on our planet, such as the Cambrian.  Our thanks to Max once again for sending in his picture.

Reconstructing the Brains of Ancient Lungfish

Comparing the Brains of Extant Lungfish to their Ancient Relatives

The lungfish might be regarded by some as a “living fossil”, a term that we at Everything Dinosaur prefer not to use, as it implies that a species has remained present in the fossil record for a very long time.  However, the six species of lungfish alive today, do represent an extremely long lineage of fishes, that have remained relatively unaltered since they first evolved back in the Devonian.  How similar extant lungfish are to their ancient counterparts has been determined by a team of researchers from South Australia (Flinders University) and Sweden (Uppsala University) who have used a combination of computerised tomography and computer modelling to map and compare the brains of living lungfish species with fossils dating back some 365 million years.

A Very Ancient Lineage of Fishes – Lungfish

A lungfish from Australia.

A living Australian lungfish (Neoceratodus forsteri).

Picture Credit: Getty Images/Tom McHugh

Ancient Vertebrates

Lungfish belong to the Class Sarcopterygii part of the huge bony fish group of vertebrates, that is most closely related to Tetrapods and that includes our own species H. sapiens.  Today’s lungfish, all six species, are becoming increasingly rare and scientists still do not know a great deal about them, their behaviours and how they are able to survive in extreme environments.  One thing we do know, is that for a fish, they are relatively big brained.  Of course, brain size does not necessarily reflect cognitive function, but lungfish brains tend to occupy about 80 percent of their cranial cavity.  Compare this to the somewhat more sedentary and a close relative of lungfish, the Coelacanth (Latimeria).  Studies of Latimeria have shown that less than 5% of their cranial cavity is occupied by their brains.

Using Technology to “Brain-warp” Lungfish Fossils

Having a cranial cavity which is mostly filled by brain tissue is a trait more associated with mammals than with fish.  Knowing this, scientists can use the endocast of lungfish fossils that have been preserved in three-dimensions to map the brains of these ancient creatures.  That is exactly what the Swedish and Australian researchers did and their paper has been published on line in the open source directory of the Royal Society.

The fossilised remains of a Late Devonian lungfish (Rhinodipterus) excavated from the Gogo Formation of western Australia have been subjected to high resolution computerised tomography and the data has been used to “brain-warp” cranial soft tissues so the brains of long extinct creatures can be constructed.

A Three-dimensional Skull Fossil of the Sarcopterygian Rhinodipterus from the Gogo Formation

A Skull of the Lungfish Rhinodipterus.

A three-dimensional Rhinodipterus skull from the Gogo Formation.

Picture Credit: ABC

The picture above shows a right lateral view of the skull of Rhinodipterus excavated from the famous Gogo Formation .  The three-dimensional preservation of fossils has permitted the cranial research to take place.

Flinders University evolutionary biologist and lead author of the scientific paper, Alice Clement commented:

“These fishy cousins of ours offer a great insight into our ancient ancestors who first crawled out of water and onto land some 370 million years ago.”

The research team used the endocast from a fossil lungfish to form a three-dimensional diagram of the brain and surrounding tissue.  From this, the scientists could develop ideas regarding brain function and phylogeny of the lungfish family as a whole.  An ancient lungfish brain reconstructed in virtual reality is one thing, built in conjunction with the team’s own sophisticated and novel distance mapping software, but it is hoped these techniques can be applied elsewhere in the fossil record.

Mapping the Brains of Lungfish

Brain mapping in Lungfish.

The Queensland Lungfish brain compared to an ancient relative (Rhinodipterus).

Picture Credit: The Royal Society

The picture above shows brain comparisons between an extant Queensland lungfish (Neoceratodus) and the extinct lungfish Rhinodipterus of the Late Devonian.   Colour coded distance map (a) for the relationship between brain and cranial cavity in Neoceratodus, (b) a three-dimensional endocast of Rhinodipterus.  The reconstructed brain of Rhinodipterus (c) presented as a colour coded brain endocast distance map and (d), a spatial overlap of the reconstructed Rhinodipterus brain (grey) with the endocast (pale red).  The reconstructed brain of Rhinodipterus viewed from the top (dorsal view) is diagram (e).

Brains are Difficult Things to Study

The new “brain-warp” method is important because when it comes to ancient anatomy, brains are extremely difficult to study.  Soft tissue such as brains is highly unlikely to fossilise, although brain shape and structure can be inferred if the bones that surround the brain are preserved.  By examining the hollow, a lot of information about brain morphology can be obtained.

Palaeontologist John Long, an expert on the fossils of the Gogo Formation and co-author of the scientific paper commented:

“Animals’ soft tissue usually breaks down, so discovery of a fossilised brain is very rare.”

The Strategic Professor of Palaeontology at Flinders University went onto explain that lungfishes have a very long evolutionary history, first evolving some 410 million years ago and having a peak diversity of about a hundred species during the latter part of the Silurian and through to the Devonian.

Weird Facts about Lungfishes

  • Molecular studies using living lungfishes and the Latimeria genus of Coelacanth have shown that lungfishes are more closely related to Tetrapods than Coelacanths.
  • Six species of lungfish are know, the Queensland lungfish (Neoceratodus forsteri) from Australia, four species from Africa and one species from South America.
  • The South American lungfish (Lepidosiren paradoxa) when first scientifically studied in the mid 1830’s was thought to be a reptile due to its close affinity with Tetrapods.
  • The West African lungfish (Protopterus annectans) can go without food for more than three years.  When this lungfish was scientifically described by Sir Richard Owen, it was placed at first with the Class Amphibia (amphibians).

Did Humans Evolve Independently in Asia?

Asia’s Role in Human Evolution May Be More Significant

Scientists from the Institute of Vertebrate Palaeontology and Palaeoanthropology (IVPP) have challenged conventional theory by claiming that humans may have evolved independently in Asia as well as Africa.  Asia’s role in our own evolution may be underestimated, that is the verdict given by Research Fellow Zhao Lingxia (IVPP) who led a field team exploring the limestone caves of Bijie, in south-west China’s Guizhou Province.  Three hominin teeth the team found in one of the caves were discovered in sediments that have been dated to 178,000 years to 112,000 years ago, some 70,000 years or so earlier than when the first modern humans (H. sapiens) are believed to have entered western Europe.  The study has been published in the Chinese academic journal Acta Anthropologica Sinica.

Scientists Study Caves Around the World to Gain a Better Understanding of Human Evolution

Inside Imanai Cave (Urals)

Scientists carefully examining in situ evidence.

Picture Credit:  Pavel Kosintsev

Tentative Dates

Before anthropologists re-write human history, more work needs to be done to establish the true age of the ancient teeth.  Re-distribution of the sediments and geological upheaval may have skewed the estimated dates.  However, other recent fossil finds (October 2015), by Zhao’s colleagues, Liu Wu and Wu Xiujie, from Hunan Province (central China), indicate an age of perhaps as old as 120,000 years.  The forty-seven teeth found in Daoxian county (Hunan Province) remain the oldest fossils of modern hominins to have been found in eastern Asia.

Commenting on the significance of these ancient human remains, Liu Wu stated:

“There is overwhelming evidence from the fossil record that China was populated with humans before the arrival of African settlers.”

Homo erectus in China

According to a number of Chinese media agencies, the fossilised skull of a Homo erectus was found in Dongzhi county in Anhui Province (eastern China).  The skull has been tentatively dated to 150,000 to 412,000 years ago.  A number of H. erectus sites are known from China (Shaanxi Province, Jiangsu Province as well as Anhui Province) and a spokesperson for the IVPP stated that over the last decade our understanding of human evolution in eastern Asia had been revolutionised.  Human fossils have been discovered across much of southern China, many of which date back 100,000 years or more, but which share similar anatomical features with modern Chinese people.

Homo erectus Skull found in China

Homo erectus skull fossil.

The skull of a H. erectus found in China.

Picture Credit: Chinese Academy of Sciences

Stone tools found in association with a number fossilised bones indicate that there was a thriving stone tool manufacturing culture in this part of the world, but it was distinct from what has been identified from African migrants into the Near and Middle East and into Europe.

The stone tool cultures and the large amount of ancient hominin fossils uncovered in China suggested a “seamless evolution” toward the present-day Chinese people.  Even if the arrival of African migrants might have introduced certain new genes, no replacement or mass extinction had happened.  There is a growing consensus that the evolutionary story in Asia is much more interesting than previously considered.

A Forgotten Continent

Renowned palaeoanthropologist Chris Stringer (Natural History Museum – London),  stated that Asia has been a forgotten continent.

Professor Stringer said:

“Its role in human evolution may have been largely under-appreciated.”

A Selection of Homo erectus Fossils from China

H. erectus fossils from China.

Homo erectus fossil material including teeth.

Picture Credit: Chinese Academy of Sciences

Homo floresiensis

A discovery made in 2003 in a cave on the Indonesian island of Flores led to the establishment of a new type of early human species – Homo floresiensis.  Their diminutive size led this hominin species to be nicknamed “Hobbits”.  The discovery of H. floresiensis demonstrates that our evolutionary history may yet reveal some intriguing surprises.

Homo floresiensis (female based on skeletal remains LB1)

Homo floresiensis female

Homo floresiensis female based on skeletal remains LB1.

Picture Credit:  Reconstruction of female H. floresiensis based on LB-1 fossil material by John Gurche

To read an article suggesting that modern humans may have driven H. floresiensis to extinction: Did H. sapiens’s arrival make H. floresiensis extinct?

Getting Our Claws into the Megaraptora

The Consequences of the Leggy Murusraptor

With the publication of the scientific paper announcing the discovery of Murusraptor (M. barrosaensis) in the on line access journal PLOS ONE, palaeontologists might be one step nearer to identifying where in the Theropoda the Megaraptora clade fits.  One thing is for certain, the Megraptoridae family and those dinosaurs closely related to them, are not closely related to the dromaeosaurids – the likes of Velociraptor.

An Illustration of the Newly Described Murusraptor barrosaensis

Roaming Patagonia 80 million years ago

A leggy, Late Cretaceous carnivore (Murusraptor).

Picture Credit: Jan Sovak (University of Alberta)

Before we discuss the phylogeny of Murusraptor and how it relates to other types of meat-eating dinosaur, lets quickly provide an outline of this newly described dinosaur.

Large Claws and Pneumatised Bones

The fossilised remains of a large, meat-eating dinosaur were spotted eroding out of a steep sandstone cliff that makes up a part of the Upper Cretaceous Sierra Barrosa Formation of Neuquén Province, southern Argentina.  The permineralised, white bones were clearly identifiable against the sandy rock matrix, but extracting the specimen proved troublesome for palaeontologists Professor Phil Currie (University of Alberta) and co-author of the scientific paper, Dr. Rodolfo Coria (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina).  The first fossils were discovered during fieldwork sixteen years ago, but it has taken time to extract the disassociated fossil material from the various layers that it was deposited in.  Having to work half-way up a remote canyon impeded the progress of the field team.  The discovery of a single, poorly preserved manual ungual, (claw from the third finger of the hand), would hardly make the layperson scream “Megaraptor”, however, at forty-two millimetres long it is comparable in size to the third-finger claw of Megaraptor (M. namunhuaiquii), fossils of which come from Patagonia too.  The real giveaway that these fossils represented a new member of the Megaraptoridae family were the air-filled (pneumatised) bones.  These light, air-filled bones are very reminiscent of modern bird and typical of the Megaraptora clade.

Biostratigraphic Diagram Showing Approximate Location of Patagonian Members of the Megaraptora Clade

Identifying members of the Megaraptora clade in a rock sequence.

Stratigraphic table and geologic section indicating the provenance of the megaraptorins recorded in the Neuquén group

Picture Credit: PLOS ONE

The diagram above shows some of the layers of rock that comprise the Neuquén Group of Upper Cretaceous strata that make up the Neuquén Basin of southern Argentina.  A  number of different types of meat-eating dinosaurs have been discovered in these rocks including Megaraptor (M. namunhuaiquii), the discovery of which led to the establishment of the Megaraptoridae, a new family of Theropods.  Megaraptor fossils come from the slightly older Portezuelo Formation of the Neuquén Group, the huge claw associated with Megaraptor was thought to have been a sickle-like toe claw, hence the initial description of a dromaeosaurid dinosaur.  However, this claw was later interpreted as actually being from the hand (first digit).  Another member of the Megaraptora clade, the nine metre long Aerosteon (A. riocoloradense ), is known from slightly younger rocks.  However, scientists remain uncertain as to where in the Order Theropoda these lightly built, large handed dinosaurs fit.

Where do the Megaraptoridae Fit In?

With the discovery of Murusraptor, palaeontologists hope to find out more about where within the Theropoda the Megraptoridae fits.  Once the remains of Murusraptor were in the preparation laboratory, the researchers, Currie and Coria, were able to establish some interesting facts about this particular dinosaur.  For example, they were able to conclude that the fossils represented a single animal, that it had come to rest lying on its right side and from the length of the tibia, it was a strong runner.

Two main theories have been put forward with regards to the Megaraptoridae and their phylogeny;

  1. Megaraptoridae family members and their close relatives making up the Megaraptora clade  are the last surviving members of the once ubiquitous Allosauria clade.  If, thanks to the discovery of Murusraptor, this is proved correct, then this would alter all the existing theories about the demise of the Allosauria.
  2. That Megaraptor, Murusraptor et al are members of the Coelurosauria clade and therefore related to modern birds, certainly studies of the breathing systems of similar dinosaurs Australovenator (Australovenator wintonensis) from Australia for example, indicate that these dinosaurs had respiratory systems very similar to extant Aves.  If this theory proves to be correct then the likes of Murusraptor would be related to the tyrannosaurids.

To complicate matters further, some of the anatomical traits found in the Megaraptora are similar to those of spinosaurids.  This hints at a possible link to a much older group of Theropod dinosaurs, the Megalosaurs.

Palaeontologists Phil Currie (red shirt) and  Rodolfo Coria Examine the Fossils 

Palaeontologists examine the matrix surrounding the fossils of a dinosaur.

Currie and Coria examine the fossils of Murusraptor in the canyon wall.

Picture Credit: University of Alberta

“Wall Thief”

As for the name, the genus comes the Latin word “murus” which means wall, a reference to the fossil being located halfway up the wall of a canyon (see photograph above).  The trivial name honours the location of the fossil find – Sierra Barrosa.  Southern Argentina has proved a happy hunting ground for vertebrate palaeontologists, especially those who specialise in studying the Dinosauria.  Rodolfo Coria was one of the scientists who helped describe two of the most iconic dinosaurs of recent times the enormous Argentinosaurus and one of the largest, terrestrial predators ever to walk the Earth – Giganotosaurus.  Last week, Everything Dinosaur reported on the describing of Gualicho shinyae, fossils of which come from the Huincul Formation, which underlies the strata from which Megaraptor and Murusraptor are known.  Researchers are suggesting that this meat-eater was as a member of the neovenatorids, a branch of the Allosaur family tree.

To read more about the tiny-armed Gualicho: Gualicho Sticks Two Fingers Up at T. rex

Dr. Coria hopes that by studying the fossils of Murusraptor the mystery of the Megaraptor phylogeny will be finally resolved.  He explained:

“Our current strategy includes two ways to get into this problem.  One way to get close to the solution of this controversy is to review all different species and build a whole new data set, avoiding biases and preconcepts.”

The Braincase

None of the bones associated with the front of the skull or the jaws were found, although some 31 teeth were recovered from the matrix.  The largest teeth are more than twelve centimetres long.  Bones from the back of the skull including those that make up the braincase were found.  This is the only known braincase material from a Megaraptor-like dinosaur.  A study of these braincase bones indicate that this specimen was a sub-adult, size estimates vary but this long-legged predator could have been between 6.5 and 8 metres long when fully grown.

Skeletal Drawing of M. barrosaensis

Murusraptor a South American dinosaur.

A drawing of the skull and body fossils associated with Murusraptor.  Scale bars 10 cm (A) and 1 metre (B).

Picture Credit: PLOS ONE

The picture above shows a close up of the skull bones (posterior part of the skull in right lateral view) and a skeletal drawing of the dinosaur (fossil bones in white).

Professor Currie commented:

“This is a super-cool specimen from a very enigmatic family of big dinosaurs.  Because we have most of the skeleton in a single entity, it really helps consolidate their relationships to other animals.” 

Professor Currie went onto state:

“A lot of people have been waiting for this paper.  When you have most of the skeleton, it takes a long time to do all the work on it.  It turns out this animal is related to Megaraptor, found only thirty kilometres away in a different rock formation.  The upshot was the more we looked, we could test whether Megaraptor was a Dromaeosaur, which it isn’t in the strict sense, and what was thought to be the foot claws—the big can-opener claw of a Dromaeosaur or raptor—were actually from the hands.  We discovered all sorts of things through the course of our research.”

“A New Megaraptoran Dinosaur (Dinosauria, Theropoda, Megaraptoridae) from the Late Cretaceous of Patagonia” was published in the open-access journal PLOS ONE.


Everything Dinosaur is switching to PLOS ONE from the previous nomenclature PLoS One.

The Turtle Shell Evolved to Help with Burrowing

Fossorial Origins of the Turtle Shell – Eunotosaurus africanus

Writing in the “Current Biology” a team of international scientists, led by Dr. Tyler Lyson (Denver Museum of Nature and Science), have concluded that the “shell” of turtles, terrapins and tortoises evolved not for protection but as an adaptation for burrowing and living underground.  As the feather did not evolve for flight, so then the carapace (top) and plastron (underneath) of the SuperOrder Chelonia, may not have evolved as shield.  Like flight feathers, the shell of a tortoise and its use in defence was a secondary outcome of an evolutionary process.

Fossils excavated from the famous Permian-aged deposits of the Karoo Basin (South Africa) suggest that the earliest evolutionary beginnings of the turtle’s shell resulted from adaptations to accommodate a burrowing or fossorial (digging) lifestyle.

Karoo Basin Fossils of the Proto-Turtle Eunotosaurus Indicate Fossorial Adaptations

Eunotosaurus adapted to a burrowing lifestyle.

The proto-turtle Eunotosaurus burrows into the banks of a dried up pond to survive in the harsh, arid South African environment about 260 million years ago. In the background, a herd of Bradysaurus, a type of reptile, crowds around some muddy water.

Picture Credit: Audrey Atuchin

A Widening of the Ribs

Dr. Lyson had the opportunity to learn more about Chelonian evolution when he, along with collaborators form the Smithsonian Institute studied the fossilised remains of a highly specialised parareptile, Eunotosaurus africanus, back in 2013.  These fossils, which also came from Late Permian aged deposits in South Africa, indicated that a widening of the ribs was the first stage in the evolution of the shell.

To read more about the origins of the shell in turtles: How the Turtle Got Its Shell

Tyler Lyson explained:  “We knew from both the fossil record and observing how the turtle shell develops in modern turtles that one of the first major changes toward a shell was the broadening of the ribs.”

However, for a quadruped, the widening of the ribs has a very serious effect on mobility.  Breathing is restricted and movement becomes more difficult.  Ribs are primarily used to support the torso during locomotion and they play a vital role in lung function.  Broader ribs, means a stiffer body which will lead to a shortening of stride length and less efficient breathing.  In the harsh and dangerous world of the Permian, these modifications would have seriously disadvantaged any Tetrapod.

Rib bones in vertebrates show hardly any variation, team members at Everything Dinosaur have recently been examining the rib bones of a prehistoric elephant, these ribs are very similar to the ribs of a large dinosaur such as a Stegosaurus.  The Chelonia are an exception, their ribs are highly modified as they form the majority of the shell.

Significant Fossil Discovery

The discovery of several, exceptionally well-preserved specimens of Eunotosaurus africanus allowed the team to examine shell evolution in much more detail than before.  A number of the fossils were found by the study’s co-authors, doctors Roger Smith and Bruce Rubidge (University of Witwatersrand, Johannesburg).  However, the most important specimen used in this study was found by a young boy on his father’s farm in the Western Cape.  Eight-year old Kobus Snyman, took the fossil that he found to his local museum, the Fransie Pienaar Museum in Prince Albert (Western Cape).  The articulated fossil measures around fifteen centimetres in length, the body (and those all important ribs) are preserved along with the hands and feet but the skull is missing.

Dr. Lyson praised young Kobus for his observational skills and for taking his find to the local museum, he stated:

“I want to thank Kobus Snyman and shake his hand because without Kobus both finding the specimen and taking it to his local museum, this study would not have been possible.”

The Eunotosaurus Fossil Found by Kobus Snyman

Fossil of Eunotosaurous found by an 8-year-old.

The fossil of Eunotosaurus found by eight-year-old Kobus Snyman.

Picture Credit: Dr. Tyler Lyson

Extant turtles, terrapins and tortoises have shells that serve mainly as protective devices.  These armoured animals are notoriously slow.  However, in this new study, developmental evidence from embryos combined with these newly described Karoo Basin fossils suggest that one of the first steps towards the shelled body-plan was a widening of the ribs.  Eunotosaurus africanus is thought to be a basal member of the Chelonia and the broad ribs of this animal have been proposed as support and stabilising mechanisms to help support a powerful forelimb digging action.  The adaptations for a fossorial lifestyle would have facilitated the movement of stem turtles into aquatic environments early in the group’s evolutionary history.

In the scientific paper, entitled “Fossorial Origin of the Turtle Shell”, the researchers propose that adaptations related to digging provided the initial impetus for shell development and that the fosssorial lifestyle may explain why basal turtles survived the catastrophe that marked the end of the Palaeozoic (End Permian mass extinction event).

To read an article from Everything Dinosaur that suggest that turtles and their kind evolved from diapsid reptiles: Study Suggests Chelonia Evolved from Diapsids

An Illustration of Eunotosaurus africanus 

A drawing of Eunotosaurus.

An illustration of the stem turtle Eunotosaurus.

Picture Credit: Everything Dinosaur

An article on a Mid Jurassic turtle discovery: The Grandfather of All Tortoises and Turtles

Still Time to Enter “Edge of Extinction” Competition

Win “Edge of Extinction” –  A Dinosaur Adventure Book

There is still time to win the fabulous “Edge of Extinction” penned by the talented American author Laura Martin, thanks to Everything Dinosaur.  However, time is running out as the competition to win a copy of this new dinosaur adventure story ends on July 31st.

Ideal Reading for Young Dinosaur Fans

Edge of Extinction by Laura Martin

An exciting young person’s read. Dinosaurs meets Lara Croft!

Picture Credit: Harper Collins Children’s Books

“It’s Them or Us”

Mankind has made the mistake of cloning dinosaurs.  The fearsome prehistoric animals are bad enough, but their resurrection brought about a global pandemic that wiped out most of the human race.  Can twelve-year old Sky Mundy find her father and solve a mystery.

To celebrate the publishing of Laura’s first novel, Everything Dinosaur is having a special competition on the company’s Facebook page to win a copy of this exciting new dinosaur themed book.

Book Competition – Win with Everything Dinosaur

Simply “Like” Everything Dinosaur’s FACEBOOK page, then give a name for the big, meat-eating dinosaur that features on the front cover of this thrilling paperback!  It’s that easy to enter the competition, but remember the closing date of Sunday July 31st is fast approaching.

Everything Dinosaur on FACEBOOK: “LIKE” our Facebook page and enter the competition!

A random draw will take place to decide the lucky winner and the prehistoric animal name caption competition closes on Sunday 31st July.  “Bon chance” to all our entrants, just come up with a name for the big front cover dinosaur and “like” our Facebook page for an opportunity to win.

To view Everything Dinosaur’s fantastic range of dinosaur themed toys, models and games: Everything Dinosaur

You can find “Edge of Extinction”  by Laura Martin here: Search Here for “Edge of Extinction”

We believe customer service is the key to getting "likes".

“Like” our Facebook page to enter the competition.

A Great Summer Read for Teenagers and for Dinosaur Fans from Nine Years and Upwards

Described as a blend of “Jurassic Park” meets “Indiana Jones”, this debut novel by Laura has received many favourable reviews from young readers.  It makes ideal reading for the holidays.  Time to hit the beach with a dinosaur book to read.

A spokesperson from Everything Dinosaur stated:

“Competitions like this are a bit of fun, however, this is a great book to enthuse young readers and it is great to see a story all about dinosaurs written specifically for the children’s book market.”

The Long-Necked and Mighty Thalassomedon

Long-necked Thalassomedon

Not long for collectors to wait now, the last batch of CollectA prehistoric animal models are on the water and they should be in stock at Everything Dinosaur in a few days.  Amongst the models due to arrive shortly, is a replica of the giant elasmosaurid Thalassomedon.  At twelve metres long, this huge Plesiosaur was one of the largest of the early elasmosaurids.  Thalassomedon was named in 1943, from fossil material discovered in Colorado (United States), in 1939, the genus name means “Sea Lord” and it is pronounced “fal-lass-so-me-don”, CollectA already have a number of marine reptiles in their portfolio including Liopleurodon, Temnodontosaurus as well as the plesiosaurids Hydrotherosaurus and Attenborosaurus.

Everything Dinosaur’s Scale Drawing of Thalassomedon

A drawing of the Plesiosaur Thalassomedon.

A mighty Thalassomedon sea monster.

Picture Credit: Everything Dinosaur

Thalassomedon swam in the Western Interior Seaway, an inland sea that divided North America in two, during the Cretaceous.  Fossils of Thalassomedon are associated with the Cenomanian faunal stage, the first stage of the Late Cretaceous.  It is very likely that this giant fed on fish and squid.

Links with Greek Mythology

The choice of Thalassomedon as a model for CollectA’s Deluxe range has been influenced by of all things, Greek mythology.  The writer, historian and soldier Xenophon, led ten thousand mercenaries stranded in Persia back to Greece via the Black Sea.  After a perilous journey through enemy territory, when the troops reached the sea they shouted with joy as reaching the coast meant rescue.

Anthony Beeson, the designer of the prehistoric animal models at CollectA, in an exclusive interview with Everything Dinosaur explained:

“The marine reptile Thalassomedon (sea lord) is another favourite of mine, and not only for the animal itself.  As a somewhat singular and quirky aside, I have to admit that its name is special to me as I have always loved that Greek word Thalassa since, as a child, reading about the March of the Ten Thousand and of Xenophon’s army crying out joyously “Thalassa! Thalassa!”  The sea!  The sea!  Sighting the Black Sea at the end of their perilous march.”

The animal’s remarkable neck comprised about half of its length.   It contained sixty-two vertebrae.  The CollectA model is, we believe, the first replica to show the tail fluke that at least some species of Plesiosaur were endowed with to aid steering.

To view the current range of CollectA Deluxe prehistoric animal scale models available from Everything Dinosaur: CollectA Deluxe Dinosaur and Prehistoric Animal Models

We look forward to receiving stocks of this new marine reptile model, perhaps when it arrives at our warehouse we will cry “Thalassa!  Thalassa!”

Year 1 Send Letters to Everything Dinosaur

Year 1 at Forden Church in Wales School Send Letters

The children in Year 1 at Forden Church in Wales School have been studying dinosaurs and prehistoric animals this term.  The young scientists have been learning all about fossils and life in the past.  A team member from Everything Dinosaur visited the school for a morning last month to show the children fossils and to teach them about dinosaurs.  Our fossil expert challenged the children in Year 1 to write letters to Everything Dinosaur and sure enough, yesterday, we received a lovely set of dinosaur themed letters from the children.

Year 1 Children Send in Letters to Everything Dinosaur

Schoolchildren write to Everything Dinosaur.

Examples of the dinosaur themed letters sent in.

Picture Credit: Forden Church in Wales School (Ellie, Evan, Faye and Logan)

Year 1 Learning about Technology

Mrs Davies, the enthusiastic teacher, explained that her class had written thank you letters after the fabulous morning of workshops with Everything Dinosaur.  Year 1 have been learning how to take photographs on the iPad and import them into a different document, the children have also been showing off their typing skills too.

Learning About the Biggest Meat-Eating Dinosaurs

William learnt about meat-eating dinosaurs.

A thank you letter from William.

Picture Credit: Forden Church in Wales School (William)

William now knows that Spinosaurus was bigger than Tyrannosaurus rex.  Hollie was amazed by all the fossils and she enjoyed playing the games.

Most Real Fossils Feel Cold When You Touch Them

Thank you after the dinosaur workshop.

A thank you letter from Hollie.

Picture Credit: Forden Church in Wales School (Hollie)

Hollie chose to illustrate her thank you letter to Everything Dinosaur using a model of a Pteranodon (flying reptile).  Jodie was amazed by all the fossils and she now knows that when you touch a fossil it feels cold!  Jodie also chose to illustrate her letter with a Pteranodon.  Jessica on the other hand, selected a wonderful model of a duck-billed dinosaur, a big plant-eater called Parasaurolophus for her letter.  She liked having her picture taken with the fossils.

Jessica’s Letter and the Parasaurolophus Model

A thank you note to Everything Dinosaur.

After the dinosaur workshop, Jessica wrote in to thank us.

Picture Credit: Forden Church in Wales School (Jessica)

A big thank you to all the children in Year 1 who sent in letters to Everything Dinosaur (Chloe, Arthur, Jack, Jodie, Jessica, Hollie, William, Evan, Ellie, Logan and Faye).  A special thank you to the teachers and staff at Forden Church in Wales School, for assisting the Year 1 children in their letter writing extension activity.

Gualicho Sticks Two Fingers Up at T. rex

Gualicho shinyae – A Dinosaur with Arms Reminiscent of Tyrannosaurus rex

With the formal publication of the scientific paper describing a new species of carnivorous dinosaur from Argentina, the Theropoda just became a little bit more curious.  Gualicho shinyae has been erected and it shows both Tetanuran (stiff tailed) and Ceratosaurian anatomical traits.  G. shinyae can also lay claim to being the most basal member of the Tetanurae clade to exhibit the reduction of digit III on the hand.  Reports in the media have compared this new Late Cretaceous South American dinosaur with Tyrannosaurus rex.  These two dinosaurs may have had very reduced arms and only two fingers on each hand, but Gualicho is not closely related to the “King of the Tyrant Lizards”.  In fact it seems that Gualicho shinyae is an example of convergent evolution, that is, not closely related organisms evolve independently similar traits as a result of having to adapt to similar environments or ecological niches.

Just why many large meat-eating dinosaurs had reduced arms and vestigial digits remains a mystery.

An Illustration of a the New Dinosaur from Argentina


Picture Credit: Jorge González and Pablo Lara

In the picture above two predatory dinosaurs (Gualicho shinyae) ambush a flock of hypsilophodonts.

The Mystery Over Short Arms and Reduced Digits in Theropod Dinosaurs

The third digit is reduced to nothing more than a metacarpal splint, very reminiscent of tyrannosaurids and just like all the known Late Cretaceous Tyrannosaurs, the arms are also reduced in proportion to the body size.  Gaulicho is estimated to have been at least six metres long, but the forelimbs are no bigger than those of a child.  The left forelimb was recovered along with a short section of vertebrae from the back, the end portion of the tail, elements of both hind limbs including an articulated foot plus a left scapulocoracoid  A couple of rib bones and some gastralia (belly ribs) were also excavated.  The rest of the skeleton had been lost to erosion, but from these remains the researchers, which included scientists from the Field Museum (Chicago), the Dinosaur Institute of Los Angeles as well as palaeontologists from  Buenos Aires and Rio Negro Province, suggest that this new dinosaur is a neovenatorid with close affinities to the North African dinosaur Deltadromeus.

An Illustration of the Likely Skeleton of G. shinyae

Gualicho dinosaur drawing.

The white shaded bones show the fossils of Gualicho that have been found.

Picture Credit: PLoS One with additional annotation by Everything Dinosaur

Discovered back in 2007, the specimen, which consists of around 5% of the total skeleton was excavated and prepared by staff of the Museo Patagónico de Ciencias Naturales.  The genus name is derived from “Gualichu”, a spirit revered by Patagonia’s Tehuelche people.  The field team encountered quite a lot of misfortune during the 2007 expedition and during the subsequent preparation work.  Researchers joked about the “curse of Gualichu”.  The species name honours Ms Akiko Shinya, the Chief Fossil Preparator at the Field Museum (Chicago).  It was Ms Akiko who found the first fossil evidence of this new type of dinosaur during the 2007 expedition to the Neuquén Basin of Patagonia (southern Argentina).

Chief Fossil Preparator Ms Akiko Shinya Showing where the Fossils were Found


Picture Credit: PLoS One (Photo by Peter Makovicky)

Corresponding author Peter Makovicky (Field Museum) stated:

“Gualicho is kind of a mosaic dinosaur, it has features that you normally see in different kinds of Theropods.  It’s really unusual, it’s different from the other carnivorous dinosaurs found in the same rock formation, and it doesn’t fit neatly into any category.”

Estimated to have weighed around 450 kilogrammes and to have been about six metres long, Gualicho has been assigned to the Allosauria clade and placed within the Neovenatoridae family, however, its exact taxonomic position remains unclear.  The scientists conclude that it resembles Deltadromeus, a contemporaneous Theropod known from North Africa.

Cenomanian Faunal Stage

The fossils of G. shinyae were excavated from sandstone strata located close to the base of the Huincul Formation.  Everything Dinosaur estimate that this dinosaur roamed what was to become Patagonia some ninety-five million years ago (Cenomanian faunal stage of the Late Cretaceous).

The New Dinosaur Discovery Adds to the Faunal Diversity of the Lower Part of the Neuquén Group

Gualicho adds to the faunal diversity of the Upper Cretaceous sediments.

A schematic stratigraphic diagram showing the position of the Gualicho fossil find.

Picture Credit: PLoS One

The picture above shows a schematic diagram of the lower part of the Neuquén Group of Upper Cretaceous strata exposed in the Neuquén Basin with the approximate level at which the holotype of Gualicho shinyae was collected from the base of the Huincul Formation.  The rocks contain a variety of vertebrate remains including a number of dinosaurs, especially Saurischian (lizard-hipped) forms.  The discovery of G. shinyae adds to the diversity of Theropods known, for example a number of carcharodontosaurids are known from this formation (Mapusaurus and Taurovenator), along with several abelisaurids such as Skorpiovenator and Ilokelesia.  There has even been some fossils found that were described as belonging to a giant raptor (Megaraptoran), this dinosaur was named Aoniraptor (A. libertatem) earlier this year, but similarities between the caudal vertebrae found and those now assigned to Gualicho, indicate that the Aoniraptor material may be synonymous with the holotype material of G. shinyae.

There have also be a large number of Sauropod remains associated with this strata.  For example, a number of rebbachisaurids have been described along with several Titanosaurs, including Argentinosaurus.

A Map Showing the Approximate Location of the G. shinyae Quarry

Showing the location of the G. shinyae fossil discovery.

A map showing the approximate location of the fossil discovery (star).

Picture Credit: PLoS One

The black star in the diagram to the left, indicates the approximate location of the G. shinyae quarry.

A spokesperson from Everything Dinosaur commented:

“This new dinosaur discovery adds to the Theropod diversity known from the Late Cretaceous terrestrial strata of the Neuquén Basin, northern Patagonia.  It also reinforces the belief of the close affinities between the Huincul Formation and rocks of a similar age laid down in North Africa.  In addition, with the discovery of a short-armed, two-fingered dinosaur that lived some twenty-five million years or so before the end Cretaceous tyrannosaurids, palaeontologists can perhaps learn why reduced forelimb size was so prevalent in large carnivorous dinosaurs.”

The scientific paper from which this article was compiled is: “An Unusual New Theropod with a Didactyl Manus from the Upper Cretaceous of Patagonia, Argentina”.

Giganotosaurus Diorama from Paleo Paul

Carnegie Giganotosaurus Dinosaur Diorama

Dinosaur enthusiast and prehistoric animal model collector Paleo Paul emailed Everything Dinosaur and sent us a couple of pictures of his dinosaur diorama featuring a remodelled Giganotosaurus.  The talented model maker has used a Carnegie Collectibles Giganotosaurus replica and set this, now quite rare dinosaur model, in a prehistoric scene that features cycads and a flowering plant.  Giganotosaurus (G. carolinii) roamed Patagonia (southern Argentina) around ninety seven million years ago and it is regarded as one of the largest Theropod dinosaurs described to date.  It certainly makes a fitting centre piece to Paleo Paul’s prehistoric scene.

The Giganotosaurus Dinosaur Diorama

A cleverly crafted dinosaur diorama.

A Giganotosaurus dinosaur diorama from Paleo Paul.

Picture Credit: Paleo Paul

The Evolution of Flowering Plants

Great care has been taken to build up the vegetation in this diorama.  A range of prehistoric plants are depicted including a substantial angiosperm (flowering plant).  It was during the latter part of the Cretaceous geological period that flowering plants began to replace ferns, cycads, bennettitales and conifers as the dominant terrestrial flora.  Top marks to Paleo Paul for adding a flowering plant to his dinosaur diorama.

Paleo Paul wrote:

“Sharp-eyed collectors will notice a Carnegie Giganotosaurus dinosaur model, I used modellers putty to modify and then repainted.”

At Everything Dinosaur we get lots of pictures sent into us by model collectors and dinosaur fans.  We really enjoy seeing how prehistoric animal models are used to create prehistoric scenes and it never ceases to amaze us how talented and skilful a number of our customers are.

The Carnegie Collectibles Giganotosaurus Dinosaur Model

The Carnegie Collectibles Giganotosaurus dinosaur model, as part of the scale model range of prehistoric animals made by Safari Ltd, was retired a few years ago.  Like the majority of this model range, that was endorsed by palaeontologists from the Carnegie Museum of Natural History (Pittsburgh, Pennsylvania, USA), it is becoming increasingly difficult for model collectors and dinosaur fans to acquire.  Fortunately, Everything Dinosaur still has stocks and our strong links with the American manufacturer has assured Everything Dinosaur customers continued access to this range for the foreseeable future.

The Carnegie Collectibles Giganotosaurus Dinosaur Model Features in the Diorama

The Giganotosaurus dinosaur model (Carnegie Dinosaurs).

The Carnegie Collectibles Giganotosaurus dinosaur model.

Picture Credit: Everything Dinosaur

To view the range of prehistoric animal models including Carnegie Collectibles available from Everything Dinosaur: Carnegie Collectibles and Wild Safari Dinos Prehistoric Animal Models by Safari Ltd

Modifying a Giganotosaurus Model

Paleo Paul has skilfully repositioned the dinosaur’s tail and given this carnivore a deeper, more robust neck.  These and the other modifications really help to make the diorama stand out.  It’s an excellent prehistoric scene and great care and thought has gone into composition and layout.

A Close Up of the Giganotosaurus Dinosaur

A fearsome Giganotosaurus dinosaur diorama.

Paleo Paul’s Giganotosaurus dinosaur model diorama.

Picture Credit: Paleo Paul

A spokesperson from Everything Dinosaur commented:

“Our thanks to Paleo Paul for sending in these pictures, we really enjoy looking at all the photographs of prehistoric animal dioramas that we receive.  Giganotosaurus, as an apex predator, is a popular choice amongst model makers and we think that Paleo Paul’s interpretation is very praiseworthy.”

Staypressed theme by Themocracy