Category: Dinosaur and Prehistoric Animal News Stories

Late Permian Therapsid was Probably Venomous

Euchambersia mirabilis was Probably Venomous

Detailed scans of the skull of the stem-mammal Euchambersia supports a theory first proposed by the enigmatic Baron Franz Nopcsa ninety years ago, that this Late Permian creature was venomous.  Scientists at the University of Witwatersrand (South Africa), concur with the Baron’s idea that this half-metre-long therapsid reptile known from the famous Karoo Supergroup, represents the earliest known venomous terrestrial vertebrate.

An Illustration of the Late Permian Therapsid Euchambersia mirabilis

Euchambersia mirabilis.

An illustration of the Late Permian therapsid Euchambersia.

Baron Nopcsa was an Austro-Hungarian aristocrat who discovered and identified a number of dinosaurs and other prehistoric animals around the world.  In 1933, during a trip to South Africa, he looked at the remains of a therapsid found a couple of years earlier by Robert Broom, the fossil was identified as a distant ancestor of today’s Mammalia.  Nopcsa stated that the fossils probably represented an animal with a deadly bite.

Nopcsa declared that this was probably the earliest venomous species ever recorded.  However, his theory couldn’t be confirmed or disproved because venom and venom glands don’t fossilise.  A study of the skull and the upper jaw (maxilla) had shown that E. mirabilis had a huge, deep maxillary fossa (a hollow), associated with a ridged canine.  To the Baron, this implied that Euchambersia possessed a specialised gland situated inside the maxillary fossa that was capable secreting venom down the ridged canine tooth into victims.

CT Scanning Technology Provides Support for Nopcsa’s Theory

A team of researchers from the Johannesburg-based university set out to scan the known fossil skulls of Euchambersia and to create detailed three-dimensional images.  It seems that Baron Nopcsa was right, the 21st Century technology supports the idea that the 255 million-year-old Euchambersia is indeed, the earliest example of a venomous terrestrial vertebrate known to science.  Some extant mammals produce venom, for example, the bizarre Australian Duck-billed platypus (a monotreme), but also amongst placentals there are venomous mammals too.  With a stem-mammal probably being venomous, it puts forward a tantalising idea that in the past, all early mammal forms may have had venom, but as the synapsid lineage that was to give rise to modern mammals evolved, so the venom producing glands were lost.

Known from Only Two Fossil Specimens

The fossils that Baron Nopcsa studied back in 1933, represent a species that is only known from one other set of fossils.  Both specimens were discovered in the same area, just a few metres apart close to the town of Colesberg (Northern Cape Province of South Africa).  The second specimen was not found until 1966.  One specimen is housed in the collection of the Natural History Museum London, the other is at the Evolutionary Studies Institute in Johannesburg.

A Closer View of One of the Euchambersia Skulls Used in the Study

Euchambersia mirabilis skull fossil.

A closer look at one of the Euchambersia mirabilis fossil skulls.

Picture Credit: University of Witwatersrand

Each specimen was CT scanned at its respective institute, and the London data was sent to the researchers at the University of Witwatersrand.  The three-dimensional models that the images were able to provide gave the scientists the opportunity to explore in great detail the internal structure of the upper jaw.

CT Scans Revealed New Details of Euchambersia Skull and Jaw Anatomy

CT scans suggest Euchambersia was first terrestrial venomous Tetrapod.

CT scans showing various views of the Euchambersia skull material.

Picture Credit: PLOS One/University Witwatersrand

Lead author of the report, published in PLOS One, Dr Julien Benoit commented:

“We found that a wide, deep and circular fossa to accommodate a venom gland was present on the upper jaw and was connected to the canine and the mouth by a fine network of bony grooves and canals.  Moreover, we discovered previously undescribed teeth hidden in the vicinity of the bones and rock, two incisors with preserved crowns and a pair of large canines, that all had a sharp ridge.   Such a ridged dentition would have helped the injection of venom inside a prey.”

Dr Julien Benoit Holding One of the Skulls that was Scanned

Holding one of the Euchambersia fossil skulls.

Dr Julien Benoit holds one of the Euchambersia fossil skulls.

Picture Credit: University of Witwatersrand

It seems that Euchambersia had anatomical adaptations which were compatible with venom production.  The confirmation of the Baron’s theory strengthens the belief that pre-mammalian therapsids were very diverse and occupied a wide range of niches within Late Permian and Early Triassic ecosystems.  These ancient creatures, distantly related to our own species, diversified as herbivores and carnivores, large and small, burrowing and ground-dwelling species.  As the earliest venomous species and a representative of this early wave of pioneering species, Euchambersia directly reflects the extraordinary adaptive capabilities of these mammalian forerunners.

The scientific paper: “Reappraisal of the Envenoming Capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μCT-scanning Techniques,” published in the on line journal PLOS One.

Everything Dinosaur acknowledges the assistance of the University of Witwatersrand in the compilation of this article.

An Unexpected Early Triassic Marine Ecosystem

American Fossil Site Shows Diverse Range of Marine Fauna Post Permian Extinction Event

A team of international scientists writing in the on line academic journal “Science Advances” have published details of a complex and diverse Early Triassic marine ecosystem that contradicts the commonly held view that life on Earth was slow to recover from the catastrophic End Permian mass extinction.  The fossils of around thirty different species of marine creature have been excavated from shales and limestone near to the city of Paris in Idaho (USA).  Four sites in total have been unearthed in Bear Lake County and they represent a marine ecosystem that existed just 1.3 million years after the Permian mass extinction event, the most devastating extinction event recorded in the whole of the Phanerozoic Eon (visible life).

Just 1.3 Million Years After the End Permian Extinction Event a Surprisingly Diverse Marine Ecosystem Thrived

Early Triassic marine fauna.

The Early Triassic marine fauna of the Paris Basin (Idaho).

Picture Credit: Jorge Gonzalez

A Dynamic Marine Ecosystem

Ammonite and conodont fossils have been used as biostratigraphical markers and the site has been dated to the middle Olenekian faunal stage of the Early Triassic, approximately 250.6 million years ago.  The fossils demonstrate that life, at least in some parts of the world bounced back remarkably quickly after the End Permian extinction event that is believed to have wiped out around 95% of life on the planet.

Lead author of the paper, palaeontologist Arnaud Brayard of the University of Burgundy-Franche-Comté (France) stated:

“Our discovery was totally unexpected.”

The Location of the Paris Basin Site (Modern and Mesozoic)

The Bear Lake (Paris Basin) fossil site location.

The Bear Lake fossil site location (modern and during the Early Mesozoic).

Picture Credit: Romano et al (Science Advances)

The picture above shows (A) the site of the Paris Basin in the context of the geography of the United States, (B) a close up of the location of the dig sites (Paris biota) identified by the researchers.  Picture (C) shows the approximate position of the Paris Basin during the Early Triassic.  The site was very close to the equator during the Early Triassic.

Surprising Fossil Discoveries

The diverse ecosystem consisted of ammonites and other cephalopods, sponges, brachipods and bivalves along with echinoids (sea urchins) crinoids, crustaceans and several vertebrates including marine reptiles, sharks more than two metres long and bony fish.  The Paris Basin ecosystem, included some unexpected creatures.  There was a type of sponge previously believed to have gone extinct 200 million years earlier (leptomitid sponges), and a squid-like group (gladius-bearing coleoids), previously thought not to have evolved until the Late Triassic.  In addition, the scientists report the finding of bones that could represent the earliest-known Ichthyosaur or at least a direct ancestor of an Ichthyosaur. Several other fossils display anatomical characteristics that were thought to have evolved much later (for example, echinoderms), indicating an early and rapid post-Permian/Triassic boundary diversification for these groups as well as previously unknown phylogenetical links between Palaeozoic and Mesozoic taxa.

Brayard added:

“The Early Triassic is a complex and highly disturbed Epoch, but certainly not a devastated one as commonly assumed, and this epoch has not yet yielded up all its secrets.”

Some of the Fossils Representing the Remarkable and Diverse Early Triassic Marine Fauna

Fossils from the Paris Basin (Idaho).

Examples of the multitude of fossil from the Paris Basin.

Picture Credit: A. Brayard, Université Bourgogne Franche-Comté (A to G); T. Saucède, Université Bourgogne Franche-Comté (H); and B. Thuy, Natural History Museum Luxembourg (I).

The photograph above shows a selection of fossils from the Paris Basin (A) a sponge fossil and ammonites, (B) leptomitid sponge and tiny brachiopods, (C) an ancient lobster, (D) a new genus of thylacocephalan crustacean and (E) shrimp fossil.  Picture (F) shows another shrimp fossil depicted under ultraviolet light. Whilst picture (G) shows a Gladius-bearing coleoid, a type of cephalopod that previously, had been thought to have evolved some fifty million years later.  A crinoid stem is shown in picture (H) and (I) depicts the remains of a Brittlestar.  Scale bars equal five millimetres for all the pictures, except for photograph (B) – scale bar one centimetre.

The researchers conclude that the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Palaeozoic to the modern marine evolutionary fauna at the dawn of the Mesozoic era.

 The scientific paper: “Unexpected Early Triassic Marine Ecosystem and the Rise of the Modern Evolutionary Fauna”, published in the journal Science Advances.

First Live Birth Evidence in Ancient Dinosaur Relative

Dinocephalosaurus – The Only Known Viviparous Archosauromorph

The first ever evidence of live birth in an animal group previously thought to lay eggs exclusively has been discovered by an international team of scientists, including a palaeontologist from the University of Bristol.  Writing in the academic journal “Nature Communications”, the researchers report upon the identification of a potential embryo inside the mother, a specimen of the long-necked Archosauromorph Dinocephalosaurus (D. orientalis).  Live birth (viviparity), is known in a number of extant reptiles, especially members of the Order Squamata, wherein a number of species of snakes and lizard “hatch” inside their mother and emerge without a shelled egg.  However, this is the first time that live birth has been recorded in the Archosauromorpha, the infraclass of diapsid Tetrapods that includes birds, crocodiles and dinosaurs.

An Illustration of the Long-Necked Marine Reptile Dinocephalosaurus (Location of Embryo Shown in Drawing)

Dinocephalosaurus illustration.

Dinocephalosaurus illustration. The red circle shows the approximate location of the embryo.

Picture Credit: Dinghua Yang with additional annotation by Everything Dinosaur

The picture above shows an illustration of the marine reptile Dinocephalosaurus.  The approximate position of the embryo inside the mother is indicated by the red circle.

Egg laying is regarded by many scientists as a more primitive form of reproduction, seen at the base of reptiles, within the amphibious anamniotes and the ancestors of terrestrial vertebrates (fish).  The fossil was found in 2008, at a quarry famous for marine fossils located in Yunnan Province (southern China).  Dinocephalosaurus was a long-necked, piscivore that flourished in warm, tropical, shallow sea that once covered much of China.  Its fossils have been dated to the Middle Triassic.  Dinocephalosaurus has been classified as a member of the Tanystropheidae family of Archosauromorphs but how closely related it was to the better known Tanystropheus remains open to debate.

An Illustration of a Typical Member of the Tanystropheidae (Tanystropheus)

A drawing of Tanystropheus.

A drawing of the bizarre Triassic reptile Tanystropheus.

Picture Credit: Everything Dinosaur

The Tanystropheidae family flourished during the Triassic and they were quite ecologically diverse.  Most of the genera are associated with Tethys Ocean coastline deposits, although several species are associated with strata laid down inland.  The scientists discovered the embryo inside the rib cage of the mother, and it faces forward making it less likely to have been consumed.  Swallowed animals generally face backward because the predator swallows its prey head-first to help it go down its throat.  Furthermore, the small reptile inside the mother is an example of the same species.

Lead study author, Professor Jun Liu from Hefei University of Technology (China), stated:

“We were so excited when we first saw this embryonic specimen several years ago, but we were not sure if the embryonic specimen is the last lunch of the mother or its unborn baby.  Upon further preparation and closer inspection, we realised that something unusual has been discovered.  Further evolutionary analysis reveals the first case of live birth in such a wide group containing birds, crocodilians, dinosaurs and the Pterosauria among others, and pushes back evidence of reproductive biology in the group by fifty million years.”

The Fossilised Remains Showing a Close View of the Embryo in the Rib Cage

Dinocephalosaurus illustration.

Dinocephalosaurus illustration. The red circle shows the approximate location of the embryo.

Picture Credit: Jun Lu

Implications for Other Members of the Archosauromorphs

Evolutionary analysis shows that this instance of live birth was also associated with genetic sex determination.  Co-author of the scientific paper, Professor Chris Organ, (Montana State University) commented:

“Some reptiles today, such as crocodiles, determine the sex of their offspring by the temperature inside the nest.  We identified that Dinocephalosaurus, a distant ancestor of crocodiles, determined the sex of its babies genetically, like mammals and birds.”

The researchers conclude that this specimen from Yunnan Province rewrites our understanding of the evolution of reproductive systems.  Perhaps, some distant descendants of these reptiles also retained this reproductive strategy, with other Archosauromorph members using live birth rather than external egg laying.  Maybe some dinosaurs were viviparous.

The embryo measures around fifty centimetres in length, when fully grown Dinocephalosaurus measured over three metres long (although about half of its entire body length was made up of that super-sized neck).  It is possible, that the scientists have drawn the wrong conclusion.  The animal, if it was a baby Dinocephalosaurus and not the fossil specimen’s last meal that “went down the wrong way”, may have been in an egg and the eggshell that once surrounded the embryo was not preserved during the fossilisation process.  That explanation cannot be completely ruled out, but Professor Benton explained that the embryo’s bones were very well developed, whilst all living Archosauromorphs lay eggs very early in embryonic development.

Furthermore, the team suggest that Dinocephalosaurus’s long neck and other features of its anatomy indicate it could not have manoeuvred easily out of the water, meaning a reproductive strategy like that of turtles, which lay eggs on land before returning to the water, was probably not an option.

Professor Mike Benton (School of Earth Sciences, Bristol University), another co-author of the paper said:

“The analysis of the evolutionary position of the new specimens shows there is no fundamental reason why Archosauromorphs could not have evolved live birth.  This combination of live birth and genotypic sex determination seems to have been necessary for animals such as Dinocephalosaurus to become aquatic.  It’s great to see such an important step forward in our understanding of the evolution of a major group coming from a chance fossil find in a Chinese field.”

Professor Benton added that since we now know that no fundamental biological barrier to live births exists in the Archosauromorpha, palaeontologists would be “looking very closely” at other fossils.  He suggested one target would be a group of aquatic crocodile relatives, whose mode of reproduction was not well known.

This piece of work is part of wider collaborations between palaeontologists in China, the United States, the UK and Australia.

The scientific paper: “Live birth in an Archosauromorph Reptile” by J. Liu, C. L. Organ, M. J. Benton, M. C. Brandley and J. C. Aitchison published in Nature Communications

Everything Dinosaur recognises the assistance of the University of Bristol in the compilation of this article.

Significant Rock Fall at Stonebarrow Hill

Rock Fall Highlights the Dangers of Dorset Cliffs

Everything Dinosaur team members have received reports about a large rock fall in the area of Stonebarrow Hill, east of the popular tourist destination – Charmouth (Dorset).  With many schools due to have their half-term break in the next couple of weeks or so, the beaches in this part of Lyme Regis will soon start to get busy with eager fossil collectors looking to find fossils washed out of the cliffs during the winter storms.  However, the significant rock fall highlights the potential dangers when fossil hunting close to unstable cliffs.

Large Boulders and Debris Under Stonebarrow Hill

Rock fall at Stonebarrow Hill (Dorset).

A significant rock fall at Stonebarrow Hill (Dorset).

Picture Credit: Brandon Lennon

Local fossil expert and fossil walks tour guide, Brandon Lennon commented:

“The large fall happened after the last storm.  Huge blocks came tumbling down onto the beach.  This area, the beach to the east of Charmouth, is a particularly popular fossil hunting location, especially for ammonites as the low tide washes fossils out of the mud slips.”

Blue-Grey Lower Lias Clays

The unstable and rapidly eroding cliffs to the east of the old cement works and Charmouth visitor centre are composed of blue-grey lower lias clays.  At low tide the foreshore area is exposed and this is a popular part of the Dorset coast for fossil collecting, especially in the early Spring after winter storms.  Like much of the coast in this part of Dorset, the cliffs are extremely dangerous and rock falls are common.  The cliffs rise steeply and any debris falling from them has the momentum to travel quite a long way onto the sandy beach before coming to rest.  We urge all would-be fossil hunters to take great care when visiting this part of the Dorset coast.

Stonebarrow Hill in Relation to the Charmouth Visitor Centre

Charmouth and Stonebarrow Hill.

The view east of Lyme Regis showing Charmouth and the location of Stonebarrow Hill.

Picture Credit: Everything Dinosaur

The picture above was taken in 2015 and it shows the location of Stonebarrow Hill in relation to Charmouth.  This is the view looking eastwards from the newly constructed coastal seawall at Lyme Regis.  A spokesperson from Everything Dinosaur stated:

“The fossil hunting season is nearly upon us!  Longer days and better weather (hopefully), we see popular fossil hunting places like Lyme Regis attracting large numbers of amateur fossil hunters and families keen to explore the area in the hope of finding some Jurassic-age marine fossils to take home.  However, the recent rock fall at Stonebarrow Hill highlights the potential dangers and we urge all visitors to stay away from the cliffs.”

The action of time and tide over the winter months will have exposed a lot of new material on the beaches to the east and west of the picturesque town of Lyme Regis.  There will be lots of fossils awaiting discovery and visitors do not have to stray too close to the cliffs to find them.

Eyes Down – Fossil Prospecting

Prospecting for fossils (Lyme Regis)

Looking for fossils at Lyme Regis.

Picture Credit: Everything Dinosaur

The foreshore will contain plenty of fossils that have been washed down from the cliffs, this area, well clear of the cliffs, will still provide plenty of fun for families looking for ammonites, belemnite guards, crinoid stems and such like.  You might get really lucky and find an Ichthyosaur paddle bone or a vertebra.

The unstable cliffs coupled with dangerous tides can never be taken lightly.  Our best advice is to go on a guided fossil walk with a local expert.  A fossil expert, such as Brandon Lennon, with his wealth of knowledge, can show visitors to the Lyme Regis area, the best (and safest) places to find fossils.

For information on guided fossil walks: Lyme Regis Fossil Walks

Fossil Hunting at Nuremberg Airport

Fossil Hunting at the Airport

Waiting at an airport can be quite boring.  Once check in and the security searches have been completed, then there is not much more to do prior to boarding your flight.  However, for Everything Dinosaur team members returning from Germany, one airport provided them with the opportunity to go on an unexpected fossil hunt.  The polished limestone floors at Nuremberg Airport (southern Germany), are full of Jurassic marine invertebrate fossils.

A Fossil Spotted at the Airport (Nuremberg Airport)

The stone floors at Nuremberg airport are full of fossils.

A cephalopod fossil (ammonite) on the airport stone floor.

Picture Credit: Everything Dinosaur

The Jurassic of Germany

In southern Germany, particularly the state of Bavaria, in the region from Nuremberg in the north to Munich in the south, there are many limestone exposures and limestone quarries to be found.  Formed from carbonate rich muds that once existed at the bottom of salty lagoons and shallow coastal margins, the rocks are famous for their fine-grained structure and flat cleaving.  These properties help to make this limestone ideal building material and the stone in this part of Germany (known as Plattenkalk), has been quarried for thousands of years.

Most of the limestone represents sediments laid down in the Middle and Late Jurassic and large areas are highly fossiliferous.  Travellers at Nuremberg Airport were quite surprised to see members of Everything Dinosaur on their hands and knees, examining and photographing various floor tiles.

Jurassic Invertebrate Fossils in Abundance at Nuremberg Airport

Jurassic fossils at Nuremberg Airport.

An ammonite fossil with the cross section of a belemnite guard.

Picture Credit: Everything Dinosaur

In the picture above, the cross section of a belemnite guard can be clearly seen on one tile, abutted up against it is another tile that shows the cross-sectional outline of an ammonite.  There are also numerous bivalve and brachiopod fossils preserved in the stone floor.  Thousands of people visit Nuremberg Airport every week, but we wonder how many of them actually notice what they are walking on!

 Ten years ago, Everything Dinosaur blogged about an innovative fossil hunting tour that could be undertaken by travellers at John Lennon Airport (Liverpool).  The ancient remains of long extinct sea creatures can be seen in the stone of the walls and floors of the concourse.  John Lennon Airport introduced the “JLA Fossil Mystery Tour” in collaboration with the Liverpool Geological Society.

To read more about the John Lennon Airport Fossil Hunting Tour: Why Not go on a Fossil Hunt Whilst Waiting at the Airport?

Perhaps the Nuremberg Airport authorities have missed a trick, with such a wonderful stone floor, travellers could be encouraged to have a go at finding fossils for themselves.  There are certainly many hundreds of fossils to see, perhaps if a tour could not be organised, then it might be a good idea to put up some information boards and displays.  You never know, it might encourage more tourists to visit the museums in the area such as the Naturhistorisches Museum of Nuremberg.

Ancient Traces Preserved in the Limestone Floor

Two fossils in the airport.

Fossils at Nuremberg airport.

Picture Credit: Everything Dinosaur

The picture above shows two more ammonite fossils, although it is difficult to identify genera, the larger specimen (bottom left), still shows its fine, straight ribs that would have adorned the outside of the shell.  The smaller ammonite cross section (right), shows some preservation of internal structure, could those be suture lines we are seeing?

What an Ammonite Actually Looked Like

A model of an Ammonite.

A great ammonite model for use in schools, museums and for model collectors.

Picture Credit: Everything Dinosaur

The picture above shows the excellent Wild Safari Prehistoric World ammonite model.  If you look carefully at the stone floors at Nuremberg Airport you can spot the preserved remains of Jurassic ammonites and other extinct marine creatures.

To view the range of prehistoric animal models including the Wild Safari Prehistoric World ammonite available from Everything Dinosaur: Wild Safari Prehistoric World Models

Ancient Rhino Remains on a Norfolk Beach

Storms Reveal Rhino Remains

The recent storms and high tides have further eroded the cliffs at the West Runton beach (Norfolk, East Anglia), revealing the beautifully preserved remains of a neck bone from an ancient rhinoceros that roamed this part of England around 700,000 years ago.  The fossilised remains of a single neck bone, the atlas (cervical 1), was spotted and local volunteers in collaboration with fossil conservation experts have carefully excavated and removed the rare find.

Spotted on West Runton Beach – A Fossil Neck Bone from a Rhino

Cervical vertebra of an ancient rhino.

The exposed elements of the Atlas (C1) of the rhinoceros found on West Runton beach.

Picture Credit: Martin Warren

West Runton Beach

The Norfolk cliffs at West Runton, just west of the town of Cromer are world-famous for their Pleistocene Epoch exposures, particularly the, peaty Upper Freshwater Bed which has produced a huge variety of vertebrate and invertebrate fossil remains.  Fossil expert and former curator at the nearby Cromer Museum, Martin Warren explained:

“There has been quite a bit of interest in scouring the Cromer cliff area for geological finds recently.  In the aftermath of storms, more people are coming to see what they can find, but the West Runton Freshwater Bed is a precious scientific resource.”

The area has SSSI status (Site of Special Scientific Interest) and hammering or digging into the cliffs is strictly forbidden.  However, time and tide is exposing this area’s ancient fauna and flora, although no formal identification of the atlas bone has been made, it is likely the fossil comes from a Stephanorhinus hundsheimensis, a rhino whose fossils are associated with the Upper Freshwater Bed locality.  A partial skull with teeth was found in January 2015, close to this new discovery.  It is not known whether the neck bone and the skull represent the same animal.

The Partial Skull and Teeth of S. hundsheimensis found in Early 2015

Stephanorhinus hundsheimensis fossils.

Stephanorhinus – Partial Skull and Teeth.

Stephanorhinus hundsheimensis

The neck bone has been dated to a warm interglacial period known as the Cromerian Interglacial.  Such is the importance of the West and East Runton beaches to geologists, that the Cromerian Interglacial was named after the nearby town of Cromer.  It was from these Norfolk beaches that geologists first identified fauna and flora indicating a period of global warming in between Ice Ages.

An Illustration of the Ancient Rhinoceros – Stephanorhinus hundsheimensis

Stephanorhinos hundsheimensis illustration.

An illustration of the prehistoric rhinoceros (Stephanorhinus hundsheimensis).

Picture Credit: C. C. Flerov, Sammlungen, Senckenberg Research Institute, Research Station of Quaternary Palaeontology,Weimar

Standing around 1.2 metres high at the shoulder Stephanorhinus hundsheimensis weighed around 750 kilogrammes and it was widespread across Europe for much of the Pleistocene Epoch.  Regarded as a generalist, living in both forest and more open habitats, this rhino, which was named from a fossil site in Austria, faced increasing competition when two, more specialised types of rhinoceros evolved.  Stephanorhinus kirchbergensis, also known as the Merck’s rhinoceros, began to displace the Hundsheim rhino in forest habitats and the Steppe rhino (Stephanorhinus hemitoechus) gradually replaced S. hundsheimensis on the grasslands.  One ancient rhino was superseded by better adapted species of rhinoceros, Stephanorhinus hundsheimensis became extinct around 580,000 years ago.

A spokesperson from Everything Dinosaur commented:

“Hopefully this new fossil will shed further light on the remarkable fauna of East Anglia during the Pleistocene Epoch.  Although we advise care, especially around the cliffs, local fossil hunters and collectors can often spot important specimens that might otherwise get washed into the sea.”

More Dinosaur Proteins Found

Evidence of Preserved Collagen in the Early Jurassic Dinosaur Lufengosaurus

Just days after writing about a scientific paper published in the academic publication “The Journal of Proteome Research”, which confirmed the presence of collagen in the fossilised bones of an 80 million-year-old duck-billed dinosaur, then a second paper comes along reporting evidence of preserved collagen in a much older dinosaur, a Lufengosaurus, a herbivore that roamed Asia back in the Early Jurassic.

Lufengosaurus – a Sauropodomorph from the Early Jurassic

The CollectA Lufengosaurus dinosaur model.

The CollectA Lufengosaurus model.

Picture Credit: Everything Dinosaur

Writing in the journal “Nature Communications”, researchers from the National Central University of Taiwan, the National Synchrotron Radiation Research Centre (Taiwan) and in collaboration with palaeontologist Robert Reisz (Dept. of Biology, University of Toronto Mississauga, Ontario, Canada) report on the discovery of protein preservation in a terrestrial vertebrate found inside the vascular canals of a rib of a 195-million-year-old sauropodomorph dinosaur, where blood vessels and nerves would normally have been present in the living reptile.

The Lufengosaurus Rib Bone that was Used in the Research

Lufengosaurus rib fragment.

A fragment of Lufengosaurus rib bone prior to collagen study.

Picture Credit: Nature Communications

Evidence of peptides and amino acids have been found before in dinosaur bones, even evidence of dinosaur blood and red blood cells, although a lot of this research remains controversial.  What is significant about this study, is that the vast majority of the organic traces found within the Dinosauria fossil record relate to bones of animals that lived during the Late Cretaceous.   In this new paper, the scientists report evidence of proteins that make up collagen in a fossil rib bone from a dinosaur that lived some 195 million-years-ago.

Palaeontologist Dr Robert Reisz, heralded the significance of this research, which used a synchrotron to analyse the mineral content of a cross-section of rib bone, he stated:

“We hope to be able to learn more about the biology of these animals and the more we know about their soft tissues the more we will know about them overall.  We are actually looking at the preservation of the original materials that were in the living organism rather than an impression of the soft tissues that were there.”

Blood from a Dinosaur?

The synchrotron permitted the team to examine the infrared spectroscopy of tiny fragments of the rib bone.  Signatures of proteins typical of collagen were picked up along with iron-rich proteins found within the walls of microscopic blood vessels located deep with the rib (specimen number CXPM Z4644).

A Highly-magnified Section of the Rib Showing a Vascular Canal with Potential Dinosaur Blood Remnants

Evidence of dinosaur blood?

Rib section with vascular canal associated with dark iron rich particles that probably constitute preserved elements of dinosaur blood.

Picture Credit: Dr Reisz (University of Toronto Mississauga)

The image above shows a rib section with vascular canal associated with dark iron rich particles (haematite) that probably constitute preserved elements of dinosaur blood.

To read Everything Dinosaur’s recently published article about duck-billed dinosaur collagen: Researchers Confirm Duck-billed Dinosaur Collagen

This new study may not represent the oldest traces of reptile proteins found in the fossilised remains of Mesozoic creatures.  In 2016, Everything Dinosaur reported on evidence of blood vessels and proteins having been identified within the fossilised bones of some Triassic marine reptiles, to read about this: Spectroscopic Studies on Organic Matter from Triassic Reptiles

The scientific paper detailing the Lufengosaurus research: “Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy”, published in the journal “Nature Communications”.

New South African Permian Dicynodont Described

Dicynodont with a Big, Bulbous Nose – Bulbasaurus phylloxyron

The Karoo Basin of South Africa is famous for its Permian fossils.  The rocks exposed in this part of the world, trace the geology of what was to become known as the super-continent of Gondwana, from the Late Carboniferous through into the Early Jurassic.  It is the abundance of Permian-aged Tetrapod fossils from the Beaufort Group of strata and its rock formations that have provided palaeontologists with a great deal of information about terrestrial life before the rise of the dinosaurs.  Researchers from the Museum für Naturkunde Berlin and the University of Witwatersrand have announced the discovery of a bizarre-looking new type of dicynodont, this critter may have been quite small, but it did have large tusks and strange, rough boss on its nose.

An Illustration of the Newly Described Late Permian Dicynodont Bulbasaurus phylloxyron

Bulbasaurus illustrated.

A drawing of the new Late Permian Dicynodont Bulbasaurus.

Picture Credit: Matt Celeskey

Bulbasaurus phylloxyron

Described from skull material that was discovered preserved in 1.5 metre-deep mudstone, it is thought the head of this reptile was transported by a flood event before coming to rest in the mud.  Over millions of years the mud became rock, preserving the skull and some of the teeth, including evidence of an impressive pair of tusks (located in the upper jaw).

Photographs of the Holotype Skull Material in Situ (SAM-PK-K11235)

Bulbasaurus skull fossil.

The skull of Bulbasaurus photographed by a member of the field team.

Picture Credit: Peer J

The photograph above shows two views of the holotype material (SAM-PK-K11235) taken from the excavation site.  Picture (A) shows the skull in left lateral view, whilst (B) shows the dorsal view.  The geological hammer provides scale.  The fossil material was discovered at Driekoppe, Vredelus, Fraserburg, Western Cape Province, by Dr Roger Smith (University of Witwatersrand), it was during a visit to view the collection of Permian fossils that dicynodont specialist Dr Christian Kammerer (Museum für Naturkunde Berlin), noted the skull showed a number of unusual features, most of which are associated with much younger types of Dicynodontians.  Further study led to the establishment of a new species (B. phylloxyron).  The genus name means “bulbous nose”, a reference to the large and roughened boss located on the naris bone.

c

A view of the skull and line drawing of the Late Permian Dicynodont Bulbasaurus.

Left lateral view and line drawing of the skull of Bulbasaurus.

Picture Credit: PeerJ with annotation by Everything Dinosaur

The picture above shows a photograph of the sixteen-centimetre-long skull and an accompanying line drawing.  The large, bulbous area of the naris (from which this animal has been named), is highlighted.

Key

sq = squamosal, qj =quadratojugal, apt = anterior pterygoid ramus, ec = ectopterygoid, fr = frontal, la = lacrimal, mx = maxilla, na = nasal, pmx = premaxilla, pb = base of postorbital bar, po = postorbital, prf= prefrontal and ? indicates an unidentified bone.  The area shaded grey in the line drawing represents matrix.

 Significant Permian Fossil Discovery

Bulbasaurus was found in rocks that have been dated to the early Lopingian Epoch of the Late Permian.  It lived around 259 million years ago.  The fossils are significant as Bulbasaurus is the oldest known member of a family of dicynodonts known as the Geikiidae.  Its discovery helps to fill in a gap in the early fossil record of this important group.

The scientific paper: “An early geikiid dicynodont from the Tropidostoma Assemblage Zone (late Permian) of South Africa”, published in the journal PeerJ.

Unravelling the Origin of the Deuterostomes

Saccorhytus coronarious – Our Earliest Ancestor?

It might resemble that green, slimy ghost/monster out of the movie Ghostbusters, but this tiny sack-like creature with a huge mouth (and no obvious signs of an anus), might just be our earliest ancestor.  Scientists writing in the journal “Nature” report on the discovery of Saccorhytus coronarious a tiny organism less than one millimetre in diameter that could represent the oldest “deuterostome” yet discovered.  Deuterostomes are divided into three major clades, one of which is the Chordata, that’s the vertebrates which includes us!  This animal could represent your earliest known ancestor!

An Illustration of the Minute Saccorhytus coronarious – Our Earliest Ancestor?

Saccorhytus Illustration

An illustration of the earliest known deuterostome – Saccorhytus.

Picture Credit: Cambridge University

Deuterostomes

Within the Animal Kingdom (Animalia), the complex organisms, (more complex than jellyfish with their radial symmetry), are split into two main groups namely:

  1. Deuterostomia – bilateral symmetry mainly, with only the echinoderms showing radial symmetry, this group includes all the Chordata, plus the Hemichordata – acorn worms and the extinct graptolites and the Echinodermata star fish, sea urchins etc.
  2. Protostomia – bilateral symmetry including the molluscs, arthropods, nematodes and worms.

These lineages are believed to share a common ancestor that lived during the Ediacaran geological period.  The hunt has been on to find this common ancestor, and Saccorhytus is the best candidate discovered to date.  Firstly, it is the most primitive example of a deuterostome yet discovered and it is the oldest, having been discovered in rocks laid down some 540 million-years-ago (Fortunian Stage of the Lower Cambrian).

The micro-fossils were discovered in rocks in Shaanxi Province, (central China) and when it comes to identifying vertebrate features, that is a bit tricky, despite the remarkable degree of preservation.

A Highly-Magnified Image Showing the Micro-fossil (S. coronarious)

Saccorhytus image.

A highly-magnified image of Saccorhytus.

Picture Credit: Jian Han

The body is bag-like and has a huge, mouth located in the centre (the oval shaped object in the central part of the organism).  It has four conical openings on either side of the body, that may well have served as outlets to allow sea water that had passed into the body to be ejected.  It has been suggested that these simple openings could provide an insight into the origin and development of gills.  The mouth probably served two functions, as the researchers have not been able to detect the presence of an anus.  What entered into the mouth, once nutrients had been extracted, was ejected out of the mouth.  The organism does show bilateral symmetry, however, a trait that was passed onto all the vertebrates.

Living in the Sand

Saccorhytus could have easily sat on the head of a pin.  It probably lived between grains of sand on the seabed, wriggling its way through them, perhaps it was an active predator, perhaps it fed on waste or other detritus.  The study was carried out by an international team of academics, including researchers from the University of Cambridge in the UK and North-west University in Xian China, with support from other colleagues at institutions in China and Germany.

Simon Conway Morris, Professor of Evolutionary Palaeobiology and a Fellow of St John’s College, University of Cambridge, one of the co-authors of the study, commented:

“We think that as an early deuterostome this may represent the primitive beginnings of a very diverse range of species, including ourselves.  To the naked eye, the fossils we studied look like tiny black grains, but under the microscope the level of detail is jaw-dropping.  All deuterostomes had a common ancestor, and we think that is what we are looking at here.”

Most of the very early deuterostome groups are known from fossils that date from between 510-520 million years ago, but these fossils already show a wide degree of diversity and variety so, if they did share a common ancestor, it probably lived much earlier. What the common ancestor might have looked like has also been extremely difficult to work out, given the level of diversity and variety already found in the fossil record from 510-520 million years ago.

The scientific paper: “Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)”, published in the journal “Nature”.

Researchers Confirm Dinosaur Collagen

2009 Brachylophosaurus Study Replicated

One of the most controversial areas of palaeontology is the extraction and assessment of traces of organic remains preserved in the fossil record.  Indeed, the study of preserved proteins and other organic remains such as potential red blood cells from within fossils tens of millions of years old, is perhaps, one of the most controversial subjects in the whole of science.  Researchers from North Carolina State University, eminent figures such as Professor Mary Schweitzer have been at the very forefront of this relatively new area of study, essentially long extinct animal molecular biology.  Organic material from fossils of dinosaurs is being reported more frequently, however, being able to repeat analyses and confirm previous results remains fundamental to the results of such studies gaining acceptance in the wider scientific community.

A new paper has been published in the “Journal of Proteome Research” by scientists from North Carolina State University who, in collaboration with colleagues from North-western University and the University of Texas – Austin, have applied the most rigorous testing methods used to date to isolate additional collagen peptides from an 80-million-year-old dinosaur thigh bone.  This study helps strengthen the idea that organic molecules can persist within the fossil record for many millions of years.  Repeating an experiment and replicating previous results has implications for our ability to study the fossils of long extinct creatures at the molecular level.  The job of “dinosaur biologist” may have come one step closer.

The Brachylophosaurus (B. canadensis) Femur

Brachylophosaurus femur.

MOR 2598 the Brachylophosaurus femur in its field jacket prior to the peptide study.

Picture Credit: North Carolina State University

The picture above shows the dinosaur thigh bone used in the study.  The area for sampling has been marked on the bone, demonstrating that not everything within this cutting-edge form of palaeontology is that sophisticated.

North Carolina State postdoctoral researcher Elena Schroeter, along with Professor Mary Schweitzer and co-worker Wenxia Zheng wanted to confirm the results of an earlier (2009) assessment of organic material retrieved from the femur of a duck-billed dinosaur (Brachylophosaurus canadensis).  Advances in mass spectrometry and clean room technology since the first experiments, would permit the team to produce a more robust set of results, with less risk of contamination or false “positive” results.

Explaining the team’s reasoning for repeating the 2009 study, Elena Schroeter stated:

“Mass spectrometry technology and protein databases have improved since the first findings were published, and we wanted to not only address questions concerning the original findings, but also demonstrate that it is possible to repeatedly obtain informative peptide sequences from ancient fossils.”

The Hunt for Collagen

Collagen is a protein, it forms fibrous strands and, ironically it happens to be the most abundant protein found in our own bodies.  The proteins that make up collagen are themselves composed of peptides, which are chains made up of amino acids.  If peptides can be identified within a dinosaur bone (or any fossil bone for that matter), palaeontologists will be able to determine the evolutionary relationships between members of the Dinosauria and their relationship with extant animals.  This would help solve such puzzles as whether or not the dinosaurs were warm-blooded and provide much more information about the lives of these long extinct animals, far more information than could be derived from an anatomical analysis of preserved bones and teeth.  In addition, this type of study would help to answer other intriguing questions. related to the fossilisation process itself.  For example, which characteristics of collagen proteins permit preservation over deep geological time?

Brachylophosaurus canadensis

Brachylophosaurus was a member of the Hadrosauridae family of bird-hipped dinosaurs (Ornithischians) and it is known from relatively abundant (bonebed) fossil material excavated from Upper Cretaceous deposits of North America (Judith River Formation of Montana, USA and the contemporaneous Oldman Formation of Alberta, Canada).  This herbivorous dinosaur lived some 80-78 million years ago, (Campanian faunal stage of the Late Cretaceous).  It was formally named and scientifically described in 1953.

The Late Cretaceous Duck-billed Dinosaur Brachylophosaurus canadensis

The Late Cretaceous Brachylophosaurus.

Brachylophosaurus illustrated.

Picture Credit: Houston Museum of Natural Science

Professor Schweitzer commented:

“We collected B. canadensis with molecular investigation in mind.  We left a full metre of sediment around the fossil, used no glues or preservatives and only exposed the bone in a clean, or aseptic environment. The mass spectrometer that we used was cleared of contaminants prior to running the sample as well.”

The sample of bone that was analysed was from the specimen’s femur (thigh bone).  The bone used was specimen number MOR 2598.  Using mass spectrometry, the team recovered a total of eight peptide sequences that form collagen (collagen I).  Two peptide sequences were identical to those recovered in the 2009 research, six are new, not having been found in previous studies.  The peptide sequences show that the collagen in a dinosaur (B. canadensis) has affinities with extant Aves (birds) and crocodylians, a result expected given the close phylogeny between the Dinosauria and these two groups.

Elena Schroeter added:

“We are confident that the results we obtained are not contamination and that this collagen is original to the specimen.  Not only did we replicate part of the 2009 results, thanks to improved methods and technology, we did it with a smaller sample and over a shorter period of time.”

Phylogenetic Affinity

Phylogenetic analyses place the recovered sequences within basal Archosauria and when only the six new sequences are considered, B. canadensis is grouped more closely to crocodylians.  However, when all sequences (current and those reported in 2009), are analysed, B. canadensis is placed more closely to stem Aves.  The researchers conclude that their data robustly supports the hypothesis of an endogenous origin for these peptides, (they originated from within the organism’s bone), confirming the idea that peptides can survive in specimens tens of millions of years old, and being able to repeat the experiment and obtain the same results bolsters the validity of the earlier (2009) study.

Professor Schweitzer, a stalwart for organic molecular research in the fossil record explained:

“Our purpose here is to build a solid scientific foundation for other scientists to use to ask larger questions of the fossil record.  We’ve shown that it is possible for these molecules to preserve.  Now, we can ask questions that go beyond dinosaur characteristics.  For example, other researchers in other disciplines may find that asking why they preserve is important.”

Testing a Hypothesis

Although this research remains controversial, there is a growing body of evidence that suggests the minute traces of organic matter can be preserved within the fossil record.  In order for this research to gain wider acceptance it must be shown that peptide sequences can be reliably obtained from fossil material and that these experiments can be repeated with the same outcomes.  Intriguingly, as our ability to identify organic molecules improves, so these highly fragmentary sequences for ancient proteins can be increasingly expanded.

To test the hypothesis that peptides can be repeatedly detected and validated from fossil tissues many millions of years old, the research team applied updated and more sophisticated extraction methodology, in conjunction with improved sterile, clean-room conditions.  High resolution mass spectrometry and bioinformatics analyses on a Brachylophosaurus canadensis specimen (MOR 2598), from which collagen I peptides were recovered in 2009, led to the identification of eight peptide sequences in the repeated experiment.  This new study further augments the idea that within fossilised elements, which, perhaps have been preserved under exceptional conditions, do indeed, contain minute organic remnants of long dead organisms.

To read a related article about the potential for finding blood remnants with dinosaur fossils: The Blood of a Brachylophosaurus

The scientific paper: “Expansion of the Brachylophosaurus canadensis collagen I sequence and additional evidence for the preservation of Cretaceous protein”.

Authors: Elena Schroeter, Mary Schweitzer and Wenxia Zheng, NC State University; Caroline DeHart, Paul Thomas, Neil Kelleher, North-western University; Timothy Cleland, University of Texas-Austin; Marshall Bern, Protein Metrics.  Published: Journal of Proteome Research

Staypressed theme by Themocracy