All about dinosaurs, fossils and prehistoric animals by Everything Dinosaur team members.
/Animal News Stories

News stories and articles that do not necessarily feature extinct animals.

14 09, 2017

Everything Dinosaur Adds PNSO Family Zoo

By | September 14th, 2017|Animal News Stories, Everything Dinosaur News and Updates, Main Page, Press Releases|0 Comments

PNSO Family Zoo Models Added to Everything Dinosaur’s Range

Everything Dinosaur has added the PNSO Family Zoo range of animal models to its product portfolio.  The Family Zoo range currently consists of twenty animal models, representing extant creatures as diverse as tigers, pandas, hippos, horses and dogs. Each model is hand-painted and presented in its own blister packaging.  PNSO has built up a deserved reputation for the excellence of its prehistoric animal models, the “PNSO Age of Dinosaurs Toys”, now collectors have the chance to add the entire Family Zoo range to their collections.

The PNSO Family Zoo Ten Most Popular Asian Animals

The PNSO Family Zoo ten most popular Asian animals.

PNSO Family Zoo 10 most popular Asian animals.

Picture Credit: Everything Dinosaur

Family Zoo Ten Most Popular Asian Animals

The ten animals in the Family Zoo Asian models range are: Brown Bear, Horse, Tiger, Goat, Wolf, Dog, Pig, Siamese Crocodile, Cow and a Panda.  This might seem like an eclectic mix of animals, however, the Family Zoo Asian models represent creatures that have had an intimate relationship with our own species.  Many animals have become domesticated whilst others have been revered in different Asian cultures, the choice of animal in this range reflects the impact that these animals have had and celebrates their importance and their significance to our own species.  The Family Zoo Ten Most Popular Asian Animals commemorates these creatures and their fascinating stories which are interwoven with our own history.

The Beautifully Painted PNSO Family Zoo Tiger Model

The PNSO Family Zoo Tiger figure.

PNSO Family Zoo Tiger model.

Picture Credit: Everything Dinosaur

The picture shows the wonderful PNSO Family Zoo Tiger figure.  Tigers are icons in both the East and the West (the oriental and occidental cultures).

To view the entire PNSO Family Zoo range of models available from Everything Dinosaur: PNSO Family Zoo Animal Models

Family Zoo Ten Most Popular African Animals

The animals that make up the PNSO Family Zoo ten most popular African animals in contrast, represent creatures that although very important to various human cultures, have never been successfully domesticated.  This model range (all mammals), consists of Wildebeest, African Buffalo, African Lion, Spotted Hyena, Cheetah, African Elephant, Giraffe, Zebra, Hippopotamus and a Black Rhinoceros.

The PNSO Family Zoo Ten Most Popular African Animals

PNSO Family Zoo Ten Most Popular African Animals.

The PNSO Family Zoo 10 most popular African animals.

Picture Credit: Everything Dinosaur

Each skilfully, hand-painted animal figure represents an iconic wild animal from Africa.  In the PNSO product literature, this range is described as:

“There are many free spirits roaming the vast Savannah of Africa.  We have produced the Family Zoo range to express our love for nature.”

All the replicas in the “Asian” and “African” ranges show wonderful anatomical details and the colouration of the models is fantastic.  It is hard to choose a favourite, but the Black Rhinoceros (Diceros bicornis), is amongst our favourites, it is great to see a model of this critically endangered large mammal.

The PNSO Family Zoo Black Rhinoceros (Diceros bicornis)

PNSO Family Zoo Black Rhinoceros replica.

The PNSO Family Zoo Black Rhinoceros model.

Picture Credit: Everything Dinosaur

The PNSO Family Zoo Black Rhinoceros measures a fraction under eleven centimetres in length and this splendid figure is a marvellous companion to the large PNSO White Rhinoceros replica, one of three large-scale figures of iconic African mammals produced by PNSO.

A spokesperson from Everything Dinosaur commented:

“These figures are rare and difficult to obtain, so we are delighted to be able to offer the PNSO Family Zoo to collectors and animal model fans.”

The PNSO Family Zoo range available from Everything Dinosaur: PNSO Family Zoo Animal Models

7 09, 2017

National Thylacine Day

By | September 7th, 2017|Animal News Stories, Dinosaur and Prehistoric Animal News Stories, Everything Dinosaur Products, Main Page, Photos of Everything Dinosaur Products|0 Comments

National Thylacine Day

Today, marks the 81st anniversary of the death of the last known Thylacine.  The animal, nick-named Benjamin, died this day (7th September 1936), at Beaumaris Zoo (Hobart, Tasmania).  The Thylacine (sometimes referred to as the Tasmanian Tiger, probably due to its prominent stripes), was the largest carnivorous marsupial of the Holocene Epoch.  It was the last member of the once diverse and numerous Thylacinidae family, which once ranged over Australia and New Guinea.

Over the last few years, Everything Dinosaur has been able to add a couple of Thylacine models to its extensive range of prehistoric and extinct animal replicas.  In 2016, CollectA added a female Thylacine model to its hugely popular CollectA Prehistoric Life model range.  The model can be clearly identified as a female because of the very obvious pouch.  The CollectA Thylacine model measures a fraction under twelve centimetres in length and the model’s head is some five centimetres off the ground.

The CollectA Thylacine Model

The CollectA Thylacine replica.

The CollectA Thylacine model.

Picture Credit: Everything Dinosaur

The distended pouch suggests that this particular Thylacine is carrying young.  This impressive, hand-painted model has received excellent reviews.  For example, a recent 5-star FEEFO review stated that this CollectA model was:

“Very high-quality product.”

Thylacinus cynocephalus

Aboriginal rock art records Thylacines and numerous fossil sites are known from Western Australia.  The Tasmanian Tiger ranged extensively over Australia and Tasmania, a mummified carcass was discovered in the famous Nullarbor Cave in 1969 by a field team from the Western Australian Museum.

Mojo Fun also has a Thylacine replica in its model range (Mojo Fun Prehistoric and Extinct Animals), this replica is approximately the same size as the CollectA model and just like the CollectA replica, it is hand-painted.  Everything Dinosaur added this model range to its portfolio as part of plans to expand the company’s extensive model range.

The Mojo Fun Thylacine Model

The Mojo Fun Thylacine.

The Mojo Fun Thylacine model.

Picture Credit: Everything Dinosaur

The Mojo Fun Thylacine has also received excellent reviews from collectors, such as this 5-star FEEFO rating – “Well-made model, exactly as presented on your web site.”

Quality Thylacine Models

Such is the quality of these two figures, that we have supplied numerous scientists, academics and museum staff with these models.

To view the range of prehistoric and extinct animal replicas available from Everything Dinosaur: The Models Available from Everything Dinosaur

September 7th is “National Threatened Species Day” in Australia.  This day is dedicated to acknowledging the efforts of those hard-working conservationists who strive to protect Australia’s flora and fauna.  It is also a day for remembering the Thylacine, our species Homo sapiens, was responsible for the extinction of this beautiful and little understood predator.

There have been several credible sightings in recent years, and prompted by some plausible eye-witness accounts, scientists from James Cook University have set up camera traps in a remote part of northern Queensland in a bid to capture irrefutable evidence that this enigmatic marsupial still exists.  Everything Dinosaur featured the plans to hunt for Thylacines in a blog article published in the spring: Hunting for Tasmanian Tigers.  The idea that a handful of “Tigers” might be still in the outback, is a very intriguing idea, however, scientists at the University of California, Berkeley, put together a mathematical model to assess the probability of the Thylacine still existing.  Having assessed all the sightings and other evidence, the most optimistic view is that the Thylacine might have persisted to around 1950 but the chances of finding a Thylacine alive today are extremely remote.  How remote?  About 1 in 1.6 trillion according to the mathematicians.

18 08, 2017

How the Chloroplast Got Started

By | August 18th, 2017|Adobe CS5, Animal News Stories, Dinosaur and Prehistoric Animal News Stories, Main Page|0 Comments

The Origin of the Chloroplast

At the centre of most of our planet’s ecosystems are plants and algae that utilise sunlight and transform carbon dioxide and water into carbohydrates and release oxygen.  These very specialised organisms can make their own food, by using light energy combined with CO2 and H2O.  As part of this process, the water molecule is split and oxygen is produced as a by-product.  This process takes place in specialised subunits within a cell called a chloroplast.

Plants and Algae are Fundamental to Most Food Chains on the Planet

Tropical ferns in the forest.

Plants and algae form the basis for most of Earth’s biota.

Picture Credit: Everything Dinosaur

The theory as to how algae and plants evolved goes something like this – an ancient single-celled eukaryote absorbed a photosynthesising bacterium (blue-green algae otherwise known as photosynthesising cyanobacteria).  Such an event would normally have been disastrous for both parties, but for some reason, both the eukaryote and the cyanobacteria survived and this led to the development of a symbiotic association.  Whilst it is accepted that the cyanobacteria are the ancestors of the chloroplast, it is not clear which of the myriad of cyanobacteria are the closest relations of the chloroplast and when this association began, or indeed where on our planet this fortuitous event took place.

The Evolution of More Complex Life Via the Symbiotic Fusing of Different Kinds of Bacteria

The origins of complex life.

Complex eukaryote cells evolved by the symbiotic fusing of different kinds of bacteria.

Picture Credit: Everything Dinosaur

The diagram above shows one theory of how more complex lifeforms evolved.  Four different types of bacteria, each with their own specific adaptations and biological characteristics may have merged to create the three main forms of multi-cellular life – animals, plants and fungi.

  • Merger 1 – Bacteria with the ability to produce food via fermentation merged with a swimming bacterium.
  • Merger 2 – An oxygen utilising bacterium invaded this first host and formed the cell mitochondria.
  • Merger 3 – Algae fused with photosynthesising cyanobacteria, which then became the cell chloroplast – the subject of the newly published study.

A team of scientists, including researchers from Bristol University, may have found the answers to these questions.  Writing in the Proceedings of the National Academy of Sciences, they postulate that the chloroplast lineage split from their closet cyanobacterial ancestor more than 2.1 billion years ago and this took place in low salinity environments.  The team conclude that it took another 200 million years for the chloroplast and the eukaryotic host to be fully united into a symbiotic relationship.  Marine algae groups diversified much later, at around 800 to 750 million years ago, sometime in the Neoproterozoic Era.

Lead author of the study, Dr Patricia Sanchez-Baracaldo (University of Bristol’s School of Geographical Sciences), commented:

“The results of this study imply that complex organisms such as algae first evolved in freshwater environments, and later colonised marine environments – these results also have huge implications to understanding the carbon cycle.  Genomic data and sophisticated evolutionary methods can now be used to draw a more complete picture of early life on land; complementing what has been previously inferred from the fossil record.”

Co-author, Professor Davide Pisani (Bristol University) added:

“Our planet is a beautiful place and it exists in such a sharp contrast with the rest of the solar system.  Think about those beautiful satellite pictures where you see the green of the forests and the blue/green tone of the water.  Well, Earth was not like that before photosynthesis.  Before photosynthesis it was an alien place, uninhabitable by humans.  Here we made some big steps to clarify how Earth become the planet we know today, and I think that that is just wonderful.”

The team used a combination of phylogenomic and Bayesian analytical methods to conclude that the chloroplast lineage branched deep within the cyanobacterial tree of life, around 2.1 billion years ago, and ancestral trait reconstruction places this event in low-salinity environments.  The chloroplast took another 200 million years to become established, with most extant (modern groups living today), forms originating much later.

Everything Dinosaur acknowledges the assistance of a Bristol University press release in the compilation of this article.

13 07, 2017

A Whale of a Time at the Natural History Museum

By | July 13th, 2017|Animal News Stories, Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page|0 Comments

Turning our Attention to Mantellisaurus

All change at the Natural History Museum in London with the refurbished main gallery (the Hintze Hall), opening to the public tomorrow.  Suspended over the hall, and replacing the Diplodocus cast (Dippy), will be “Hope” a 25.2-metre-long skeleton of a female Blue Whale (Balaenoptera musculus) symbolising the Museum’s focus on conservation and the natural world.

Ready to Greet Millions of Visitors – The Blue Whale Skeleton (Hintze Hall)

Blue Whale skeleton.

The female Blue Whale skeleton at the London Natural History Museum.

Picture Credit: The Trustees of the Natural History Museum, London

A Conservation Success – So Far

The whale skeleton, some 4.5 tonnes and all 221 bones of it, had previously been on display in the mammals gallery of the museum but it had been partially hidden from public view.  Newly restored and augmented, thanks to some subtle 3-D printing to supplement the bones in the right flipper, this spectacular exhibit is depicted plunging towards the main gallery entrance as if the leviathan is attempting to scoop up visitors.  The Blue Whale helps to highlight a conservation success story.  Fifty years ago, the Blue Whale population had plummeted to just a few hundred and this, the largest animal known to have existed, was on the verge of extinction.  International conservation efforts to help preserve and support populations of baleen whales have paid off, at least in the case of Balaenoptera musculus with an estimated 20,000 individuals swimming the oceans of the world today.  Still this represents less than one tenth of the estimated Blue Whale population at the beginning of the 19th Century.

A Spectacular Pose for “Hope” the Blue Whale Skeleton

The Blue Whale exhibit.

The Blue Whale exhibit (Hintze Hall).

Picture Credit: The Trustees of the Natural History Museum, London

A Nod to Whale Evolution

Visitors to the gallery, may miss a tiny pair of bones located under the massive spinal column of the beast.  If you look up around the mid-point of the spine you might just be able to make out two tiny triangular bones, supported by wires underneath a vertebra.  These are the remains of the hip bones and hind limbs.  These bones are not visible in the living animal, they serve no real purpose anymore, except to prove that whales are descended from four-legged, terrestrial animals.  In fact, whales (Cetacea), belong in the Order Artiodactyla, the even-toed hoofed mammals and molecular studies suggest their nearest land-living relatives today are the Hippopotamuses (hippos and whales are grouped into the Whippomorpha).

Proof that Whales are Descended from Terrestrial Mammals

Hind limbs of the blue whale.

Evidence of the hind limbs of the Blue Whale.

Picture Credit: The Trustees of the Natural History Museum, London

Lorraine Cornish, the Museum’s Head of Conservation, exclaimed:

“Hope is the only blue whale skeleton in the world to be hung in the diving lunge feeding position.  Suspending such a large, complex and historical specimen from a Victorian ceiling was always going to be challenging, but we were determined to show her in as lifelike position as possible and we are thrilled that the result is truly spectacular.”

Wonder Bays – Look out for Mantellisaurus

“Dippy” may have gone but the Hintze Hall will be home to one dinosaur at least.  In one of the side bays a mounted skeleton of the iguanodontid Mantellisaurus (M.atherfieldensis) has been put on display.

A Nod to Gideon Mantell – Mantellisaurus

Mantellisaurus on display.

Mantellisaurus on display in the Hintze Hall.

Picture Credit: The Trustees of the Natural History Museum, London

The mounted Mantellisaurus specimen represents one of the most complete dinosaur specimens excavated from the UK.  At Everything Dinosaur, we think the specimen is NHMUK R5764, if it is, this is the holotype and it was discovered in 1914, by a local fossil collector called Reginald Hooley whilst he was exploring several, large shale blocks near Atherfield Point (Isle of Wight).  During his lifetime, Sir Richard Owen, the anatomist who helped found what is now called the Natural History Museum, did a great deal to denigrate the work of his contemporary Gideon Mantell.  Dinosaur fans as well as distinguished palaeontologists we think, will approve of the Museum’s recognition of Mantell’s contribution to the nascent study of dinosaurs.  Owen’s statue might look down on the exhibits, but the mounted skeleton, once assigned to the Iguanodon genus, now stands proud on the eastern side of the Hintze Hall and it bears the name of one of the other great contributors to early palaeontology.

We look forward to visiting the Museum in the near future.  We will marvel at the spectacular Blue Whale nodding its head in our direction as we walk in, but in turn we will stand before the Mantellisaurus and nod our heads in recognition of the work of Gideon Mantell who did much to shine a light, where before there was only darkness.

6 06, 2017

Foul-mouthed Study – Variation in Duck and Goose Beaks

By | June 6th, 2017|Animal News Stories, Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page|0 Comments

Diet Shaped the Evolution of the Beaks of Ducks and Geese

For Aaron Olsen, a walk in a park to see the ducks and other birds serenely swimming on the local pond has added significance.  Ducks and geese, common waterfowl that we are all familiar with, have fascinated the postdoctoral researcher at Brown University (Rhode Island, USA).  For Aaron, seeing gaggles of geese and rafts of ducks has led him to question how such a myriad of different beak forms have evolved within the waterfowl clade (Anseriformes).  Publishing in the academic journal “Functional Ecology”, the scientist has concluded that different diets and different feeding strategies are the main drivers of beak shape.

The Beaks of Ducks and Geese Come in All Shapes and Sizes

Anseriformes - skulls variation due to dietary preferences.

From left to right a gradient of duck-to-goose-skulls.  Research shows that waterfowl beaks vary primarily because of differences in diet and feeding behaviour.

Picture Credit: Aaron Olsen

Ancient Anseriformes (Prehistoric Ducks)

The analysis of the relationship between beak shape and diet amongst waterfowl shows that feeding is most likely to be the major influence on bill shape, but it also suggests that the early members of the Anseriformes were more like ducks than geese.  The main evolutionary driver when it comes to the shape of the beaks of waterfowl is their diet.

Commenting on his research, Aaron Olsen, of the Department of Ecology and Evolutionary Biology at Brown University stated:

“This is the most comprehensive look to date at the relationship between diet and beak shape.”

The oldest member of the Anseriformes is Vegavis (V. iaai), fossils of which have been found in Upper Cretaceous rocks (Maastrichtian faunal stage) of Antarctica.  Waterfowl, the ancestors of today’s ducks and geese were present some 66 million years ago, although their evolutionary roots probably go back further into the Mesozoic.

Vegavis of Late Cretaceous Antarctica

The vocalisation of dinosaurs and birds.

Vegavis takes off whilst a male Theropod dinosaur vocalises close by.

Picture Credit: Nicole Fuller/Sayo Art for University of Texas at Austin

Scientists have identified the vocalisation organ of Vegavis, this bird may have made a honking sound.

To read more about this research: Ancient Bird Box Sheds Light on the Sounds of Early Anseriformes

Waterfowl – Different Beak Shapes

Whilst working at the University of Chicago and the nearby Field Museum of Natural History, Aaron set out to explore the reasons why waterfowl have such differently shaped beaks.  He suspected that diet and feeding behaviour might play a pivotal role in beak morphology, but rather than compare diets and feeding strategies he undertook a detailed three-dimensional analysis of bird skulls and their bills.  He then cross-referenced his findings with literature on the diet of each bird.  A total of 136 specimens were involved in the study, covering 46 genera and 51 species.  As well as looking at living species, the study included an analysis of the recently extinct, flightless duck Thambetochen chauliodous of the larger Hawaiian Islands (except Hawaii), which prior to the arrival of domesticated animals, were the main browsers of vegetation on the isolated archipelago.  The research also involved an analysis of the skull and beak of a much older water bird – Presbyornis spp. from the Palaeocene and the Eocene Epochs.

Extant Goose Skull and Extant Duck Skull Compared to the Ancient Anseriform Presbyornis

Comparing duck and goose skulls.

A Cape Barren goose skull (top) has a very different beak than that of a freckled duck (middle), which does resemble the fossil skull of Presbyornis (bottom).

Mathematical Analysis – Plotting Beak Evolution

Data analysis revealed that there was a strong correlation between dietary preferences and beak shape.  Ducks tend to have relatively long, wide-tipped beaks that can accommodate a lot of water. Ducks feed by filtering out food such as invertebrates and plant seeds from water, whereas geese evolved to feed on the leaves and roots of plants (although some still filter feed).  Most geese have shorter, narrower beaks better designed for browsing on plants.

Dr Olsen contends that the correlation between beak morphology and diet is so strong that other roles for beaks, such as preening and cooling would have had little influence, although he does not rule out these other functions having a role in the evolution of beak shape.

First Ducks Then Geese

In a review of the scientific literature, Aaron, a specialist in Anseriform research, suggests that the early ancestors of extant ducks, geese and other related waterfowl, were very duck-like.  Geese-like beaks evolved later, evolving several times in several places.  In summary, Dr Olsen concludes a duck-like beak is ancestral for most waterfowl with several independent transitions to a more goose-like beak shape occurring over time.

Next time you are in the park, take a look at the ducks and other water birds, the ancestors of these birds lived alongside the dinosaurs.  It’s also worth noting that ducks and geese are technically dinosaurs too, after all, they are all members of the Theropoda.

Non-Avian Dinosaurs and Avian Dinosaurs (Birds)

Dinosaurs and birds.

Avian and non-avian dinosaurs.

Picture Credit: Everything Dinosaur

The scientific paper: “Feeding Ecology is the Primary Driver of Beak Shape Diversification in Waterfowl”, by Aaron M. Olsen published in Functional Ecology.

23 04, 2017

Happy St George’s Day

By | April 23rd, 2017|Animal News Stories, Dinosaur Fans, Main Page|0 Comments

Dinosaur Names Related to Dragons – St George’s Day

Today, April 23rd, is St George’s Day, the national day for England (St George is the patron saint of England, a saint incidentally celebrated and revered by a number of other countries too).  The story about brave St George slaying a dragon might be a myth, but we thought just for fun we might try and list as many dinosaurs associated with dragons as we could.  This is harder than it seems, for example, St George is honoured in both western and eastern cultures and in China, the origin of the dragon legends could have originated from the discovery of fossils of dinosaurs.  Which dinosaurs?  We don’t think anyone can be sure.

The White Horse Prehistoric Chalk Figure at Uffington (Oxfordshire) Has Been Described as Dragon

The Uffington chalk figure.

Children draw the Uffington prehistoric chalk figure.

Picture Credit: Great Wood Primary School

Chinese Dragon Dinosaurs

The word “long” translated from the Chinese means “dragon” so we could have the Theropods Guanlong, Shaochilong, Zhenyuanlong, Dilong and Zuolong for starters.  To this list, we could add the basal Ceratopsian Yinlong (Y. downsi) and we must not forget the beautiful “sleeping dragon” fossil, representing a troodontid, named as Mei long.

An Illustration of the Sleeping Dragon (M. long)

Mei long illustration.

The sleeping dragon Mei long.

Dinosaurs and Dragons

As well as those dinosaurs from Asia with names that reference dragons, there are a number of genera named after the Latin for dragon “draco”. How many can we name?

Firstly, we have Dracoraptor hanigani, a very early Jurassic dinosaur from Wales, a country with its own dragon culture and stories.

An Illustration of the Welsh Theropod Dracoraptor (D. hanigani)

Dracoraptor hanigani.

An illustration of the Theropod dinosaur from Wales Dracoraptor hanigani.

Picture Credit: Bob Nicholls (National Museum of Wales)

In addition, we can add Pantydraco (P. caducus), a Late Triassic member of the Sauropodomorpha from the Vale of Glamorgan.  What other dinosaur dragons can we think of?

Here’s our list:

  • Dracovenator (D. regenti) – from the Early Jurassic of South Africa, believed to be a dilophosaurid.
  • Dracorex (D. hogwartsia) – A member of the bone-headed Pachycephalosauridae named and described in 2006
  • Draconyx (D. loureiroi) – from Portugal a possible iguanodontid.
  • Dracopelta (D. zbyszewskii) – from Portugal, fragmentary fossils indicate a Thyreophoran (armoured dinosaur affinity)
  • Dracoraptor (D. hanigani) – from Wales (see notes above)
  • Pantydraco (P. caducus) – (see above)

A Mounted Skeleton of Dracorex (D. hogwartsia)

Reconstruction of Dracorex.

Dracorex fossil skeleton.

Picture Credit: Indianapolis Children’s Museum

How many dragon inspired dinosaurs can you name?

5 04, 2017

Hunting for Tasmanian Tigers

By | April 5th, 2017|Animal News Stories, Dinosaur and Prehistoric Animal News Stories, Main Page|0 Comments

Scientists Prepare to Set Camera Traps in Hunt for Thylacine

Ever since the last known Thylacine died in Hobart zoo back in 1936, there have been numerous “sightings” both in Tasmania and on the Australian mainland of this marsupial, frequently referred to as the “Tasmanian Tiger”.  Most of these reports have been dismissed either as hoaxes, or as observers mistaking foxes or feral dogs for the largest carnivorous marsupial known to have co-existed with modern man during the Holocene Epoch.

Grainy photographs and blurred film footage have come to prominence from time to time, helping to fuel the debate as to whether Thylacines (Thylacinus cynocephalus), which were believed to have been hunted to extinction, might just have survived, with a few scattered populations holding on.

A Picture of the Last Known Thylacine

A photograph of a Thylacine.

A picture of “Benjamin” the last known Thylacine to live in captivity.  This animal died in Hobart zoo (Tasmania) in 1936.

Picture Credit: David Fleay

Scientific Expedition to a Remote Location in Northern Queensland

A field team will be dispatched to the remote Cape York Peninsula (northern Queensland), in a bid to search for evidence of the existence of a surviving Thylacine population.  The team, led by Professor Bill Laurance of James Cook University (Queensland), hope to set fifty camera traps in the area so that photographic proof can be established.  The Cape York Peninsula has been chosen as a number of credible witness accounts of possible sightings, including one from a tourism operator and former park ranger, have occurred in the locality.

Professor Laurance commented:

“All observations of putative Thylacines to date have been at night, and in one case four animals were observed at close range, about 20 feet away, with a spotlight.  We have cross-checked the descriptions we received of eye shine colour, body size and shape, animal behaviour, and other attributes, and these are inconsistent with known attributes of other large-bodied species in north Queensland such as dingoes, wild dogs or feral pigs.”

The exact destination of the field team is being kept a closely guarded secret.  Nearly four thousand reported sightings have been recorded on the Australian mainland, it is the reports from qualified rangers, Aboriginal communities and the many credible witnesses that offer the tantalising prospect of a live population being identified.

Ranger Patrick Shears, explained that local Aboriginals call the beast the “moonlight tiger” and that many observers claim that these marsupials approach quite close, before turning their long, stiff tails and trotting away into the darkness.

A Reward Offered

Tasmanian tour operator Stuart Malcolm has offered an $1.75 million AUD (£1 million GBP), reward for proof that the Thylacine has survived to the present day.  Professor Laurance and his team are not interested in any reward money, after all, it was a bounty placed on each dead Thylacine recorded, that helped devastate the species in Tasmania.  The Professor is not particularly sanguine when it comes to the chances of the expedition being a success.  He has stated that it is very unlikely that the Thylacine has survived on the Australian mainland.   However, with a number of credible reports to guide them, it seems that if the Tasmanian Tiger has survived anywhere on the mainland of Australia, the Cape York Peninsula is a good place to start looking.

CollectA introduced a finely detailed model of a female Thylacine into their model range last year.  This model is quite hard to find, but not as difficult as a live Thylacine to track down.  Everything Dinosaur stocks this model, for the CollectA Thylacine and other rare CollectA models: CollectA Prehistoric Life Models

The CollectA Prehistoric Life Thylacine Model

The CollectA Thylacine replica.

The CollectA Thylacine model.

Picture Credit: Everything Dinosaur

Everything Dinosaur intends to add a second Thylacine model to its already, extensive range later in the year.   Check this blog for more details about the model and also for updates on the Queensland expedition.

24 03, 2017

Queensland Residents Asked to Stay “CrocWise”

By | March 24th, 2017|Animal News Stories, Main Page|0 Comments

One Fatality and Another Person Badly Wounded in Separate Crocodile Attacks

The Estuarine crocodile that fatally attacked a spear fisherman in the far north of Queensland (Australia) has been caught and killed according to local officials.  Warren Hughes (35), was attacked at Palmer Point, near Innisfail, south of Cairns last Saturday.  His empty dinghy and spearfishing tackle was found on Saturday evening, but his body was not discovered until the following Monday.

In a statement released by the Department of Environment and Heritage Protection (EHP), the four-metre long reptile was captured on the evening of the 21st March (Tuesday), at the mouth of the Russell River, not far from the scene of the attack.

Saltwater Crocodiles are the World’s Largest Living Reptile

Saltwater crocodile (Estuarine crocodile).

A Saltwater crocodile.

Environment Minister Steven Miles commented that the wildlife officers were confident this crocodile was the animal responsible due to its size and the fact that it was found in close proximity to where the attack took place.

The minister added:

“I want to thank our incredible team of wildlife officers who do a difficult, and in cases like this, a very dangerous job.  This area is well within crocodile country and it is important that residents and visitors continue to exercise “CrocWise” behaviour at all times.”

Be “CrocWise”

“CrocWise” is a Northern Territory Government campaign to educate people about crocodiles and reduce the risk of attacks.   As the Saltwater (Estuarine) crocodile population has grown over the last fifty years or so, there has been an increase in crocodile attacks on swimmers and fisherman.  With Australian urban centres expanding further into, what was once wilderness, so there is an ever-increasing threat from encounters with these apex, highly dangerous predators.

Sadly, many people still don’t understand the threat that these crocodiles, some of which can grow to over six metres long, can pose.  On Saturday 18th March, a teenager, Lee de Paauw was badly mauled by a three to four-metre-long crocodile after jumping into a river, known to have a resident population of crocodiles, north of Queensland.  It seems the 18-year-old embarked on his foolish dip after being dared to do it by his friends.  Luckily, the young man managed to escape the attentions of the predator, however, he received severe injuries to his left arm.

This morning, (24th March), wildlife rangers trapped a large crocodile very close to where Lee was mauled.  The animal is being kept at a holding facility until it can be properly located.  The Australian Government has a capture and release programme in place to deal with dangerous crocodiles.  It is hoped that this particular crocodile will be relocated to an Australian zoo.

The Crocodile Suspected of the Attack on Lee de Paauw

Crocodile suspected of attack.

The crocodile believed to be responsible for the attack on a teenager.

Picture Credit: Drew Creighton

 

11 03, 2017

Frogspawn in the Office Pond

By | March 11th, 2017|Animal News Stories, Everything Dinosaur News and Updates, Main Page|0 Comments

Frogspawn in the Office Pond

We have frogspawn in the Everything Dinosaur office pond!  Early this morning two batches of frogspawn were laid.  We are expecting more as at least five frogs have been spotted in the pond this afternoon.  The frogs are all Common Frogs (Rana temporaria), the name is a bit of a misnomer as frog numbers, like most species of amphibians have declined substantially in recent years.  It’s great news for us, to have frogspawn in the pond once again.

Frogspawn and Mating Frogs in the Office Pond

We have frogspawn in the office pond.

Frogspawn in the office pond, with two frogs also in the picture.

Picture Credit: Everything Dinosaur

We have been fortunate to have had frogspawn in our small pond for many years now, hopefully, we shall be able to see some small frogs emerging later in the summer, helping to sustain the local frog population and doing our bit for conservation.

Helping to Conserve the Local Frog Population

Mating frogs (2017).

A pair of mating frogs (2017).

Picture Credit: Everything Dinosaur

27 12, 2016

Scientists Build Three Dimensional Future Human

By | December 27th, 2016|Animal News Stories, Dinosaur and Prehistoric Animal News Stories, Main Page|0 Comments

Researchers Create “Trillennium Man”

Interactive three-dimensional models of human joints, showing how common medical complaints have arisen and how we are likely to evolve in the future, have been created at Oxford University.  The research was led by Dr Paul Monk (Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences) and it has led to the creation of a computer model of a human skeleton, one that represents a possible individual living around the year 6017 AD.  This individual has been nick-named “Trillennium Man”.

The Research Team Plotted the Evolution of Key Tetrapod Joints

Studying how the human body will evolve.

“Trillennium Man” plotting the evolution of key joints in the human body.

Picture Credit: Oxford University

Dr Monk was interested in exploring why patients at his clinic presented with very similar orthopaedic problems.

He explained:

“We see certain things very commonly in hospital clinics, pain in the shoulder with reaching overhead, pain in the front of the knee, arthritis of the hip, and in younger people we see some joints that have a tendency to pop out.  We wondered how on earth we have ended up with this bizarre arrangement of bones and joints that allows people to have these problems.  And it struck us that the way to answer that is to look backwards through evolution.”

Computerised Tomography Used to Assess Three Hundred Specimens

A total of 224 bone specimens were scanned (CT scans), in order to assess how the human body and joints such as the shoulder, hip and knee have evolved and changed over time.  Specimens from the Smithsonian Institute (Washington) and the London Natural History Museum were used in this study.  Tetrapods involved in the research included members of the hominin tribe such as Homo ergaster and Homo erectus as well as a range of other fossils, including some that represent some of the very first terrestrial vertebrates to have lived.  The scans were than mapped using a computer programme to produce three-dimensional images to show how the bones and joints had changed.  This research has provided new insights into the morphological trends with common orthopaedic complaints such as shoulder pain and anterior knee discomfort.

The Bones of Australopithecus afarensis (Lucy) were Incorporated into the Study

"Lucy" A. afarensis discovered in 1974.

The fossilised bones of Lucy (approximately 40% of the skeleton).

Picture Credit: The Hidden Treasures of Ethiopia

Considering Future Potential Human Joint Problems 

By extrapolating the mathematical models, the research team could attempt to plot how our bodies and their key joints will evolve in the future.

Dr Monk added:

“Throughout our lineage we have been adapting the shape of our joints, which leads to a range of new challenges for orthopaedic surgeons.  Recently there has been an increase in common problems such as anterior knee pain, and shoulder pain when reaching overhead, which led us to look at how joints originally came to look and function the way they do.  These models will enable us to identify the root causes of many modern joint conditions, as well as enabling us to anticipate future problems that are likely to begin to appear based on lifestyle and genetic changes.”

Both quadrupeds and bipeds were included in the study, the research even involved examining how dinosaurs with their digitigrade and semi-digitigrade stance evolved and changed over time.

Commenting on the significance of this research, Dr Monk concluded:

“Current trends reveal that the modern shapes of joint replacements won’t work in the future, meaning that we will need to re-think our approach for many common surgeries.  We also wanted to see what we’re all going to look like in the future, and to answer questions such as ‘are we evolving to be taller and faster or weaker’, and ‘might we be evolving to need hip replacements earlier in the future?’”

Human Hip Bones Evolving

As our distant ancestors adopted a bipedal method of locomotion so the femur (thigh bone) changed.  The neck became gradually thicker to help support body weight.  The thicker the neck of the bone in the femur the greater the likelihood of arthritis in the hip joint.  Orthopaedics have suggested that this thickened neck of the femur might be a reason why our species is prone to hip problems.

Over Millions of Years the “Neck” of the Femur has Become Thicker

Human femur evolution.

Neck of the hominin thigh bone has become broader to support our weight.

Picture Credit: Oxford University

In the picture above, the proximal end of a human femur (H. sapiens), has been modelled using the CT scans (right) and this is compared to the model produced from scans of an early hominin (left).  The red arrows indicate the region of the neck of the thigh bone that has become thicker.

Everything Dinosaur acknowledges the assistance of the University of Oxford press room in the compilation of this article.

Load More Posts