All about dinosaurs, fossils and prehistoric animals by Everything Dinosaur team members.
18 05, 2016

March of the Dinosaurs

By |2023-04-29T06:56:56+01:00May 18th, 2016|General Teaching|Comments Off on March of the Dinosaurs

St Thomas More School Study Dinosaurs

As part of Everything Dinosaur’s teaching work during the spring term, a team member visited St Thomas More school (Worcestershire).  Team members were there to deliver a series of dinosaur and fossil themed workshops to the various classes.  We set the children at the school a number of prehistoric animal themed challenges including fiction and non-fiction writing activities.  In addition, we asked the pupils to have a go at designing their very own dinosaur.  Sure enough, the enthusiastic, budding palaeontologists created a number of wonderful dinosaur drawings and, we are delighted to say, one of the teachers sent us a selection.

Prehistoric Animal Pictures Sent to Everything Dinosaur

March of the Dinosaurs

Lots of lovely dinosaur designs sent into Everything Dinosaur by Key Stage 1.

Picture credit: St Thomas More Catholic First School

View Everything Dinosaur’s website: Everything Dinosaur.

March of the Dinosaurs – Helping to Develop Vocabulary

As part of our “design a dinosaur” challenge we asked the children to have a go at labelling the various body parts of their creature.  This helps the children to gain confidence with writing and assists with the development of their vocabulary.  We received some very impressive drawings, they have been pinned up onto one of the walls in our warehouse and they make a very colourful display.  Dinosaurs and fossils as a term topic provides a very rich and diverse range of learning objectives for the teaching team and at Everything Dinosaur we support teachers by providing lots of free prehistoric animal themed resources to permit the role out of a teaching programme with lots of variety.

For dinosaur toys and games: Dinosaur Toys and Gifts.

Victoria’s “Vicosaurus” A Very Spiky Dinosaur

Victoria draws a dinosaur.

Victoria imagined a brown dinosaur with huge green spikes.

Picture credit: St Thomas More Catholic First School

Well done Victoria, we really appreciate the time and trouble you took over your dinosaur drawing.

A Very Colourful Prehistoric Animal Designed by Alex

March of the Dinosaurs drawings.

Alex sent Everything Dinosaur a picture of “Alexosaurus”.

Picture credit: St Thomas More Catholic First School

Dinosaur Themed Drawings

As with all the dinosaur themed drawings and letters we receive from school children, our team members look at every one and we really enjoy putting them up onto our warehouse wall.  If the dinosaur designs we received from the children at  St Thomas More Catholic First School are anything to go by, then there are some very talented artists currently studying fossils and dinosaurs in UK schools.

To enquire about a dinosaur workshop in your school: Contact Everything Dinosaur.

18 05, 2016

Life “Loomed Large” 1.56 Billion Years Ago

By |2023-04-29T06:47:37+01:00May 18th, 2016|Dinosaur and Prehistoric Animal News Stories, Main Page, Palaeontological articles, Photos/Pictures of Fossils|0 Comments

Multicellular Eukaryotes from  1.56 billion-year-old Rocks (Gaoyuzhuang Formation)

A team of Chinese and American scientists have confirmed the presence of large (several centimetres long in some cases), communities of eukaryotic cells preserved as impressions within rocks laid down in a shallow marine environment some 1.56 billion years ago.  This suggests that organisms had begun to form such structures during the Mesoproterozoic, some five hundred million years or so after the very first eukaryote cells evolved.

Macro-Fossils Preserved in the Mudstones of the Gaoyuzhuang Formation (Northern China)

Examples of various eukaryotic communities preserved in the mudstones of the Gaoyuzhuang Formation.

Examples of various eukaryotic communities preserved in the mudstones of the Gaoyuzhuang Formation.

Picture credit: Nature Communications/Nanjing Institute of Geology and Palaeontology

Scale bar information for the picture (above) 5 cm (in a,b,g), 20 mm (in c), 40 mm (in d) and 5 mm (in e,f).

Multicellular Eukaryotes

The scientists, which included Professor Andrew Knoll (Harvard University), a co-author of the academic paper published in the journal “Nature Communications”, identified a variety of different shaped fossils, some were linear, others wedge-shaped, whilst some were oblong and yet another group were described as tongue-shaped.  In total, fifty-three fossil communities were identified.  Although it is difficult to assign these structures to a place in standard Linnaean classification, a spokesperson from Everything Dinosaur suggested that these ancient life forms could be linked to the Kingdom Protoctista, a biological kingdom which includes certain large, multicellular eukaryotes, such as red algae and kelp.

What is a Eukaryotic Cell?

Eukaryotes have their genetic material enclosed within a nucleus, this is a distinct area within the confines of the cell where the genetic instructions and information can be found.  They also have organelles which are specialised structures within the cell that are responsible for specific areas of activity such as mitochondria for energy production or chloroplasts that convert sunlight energy into sugars (photosynthesis).  The first cells to form lacked a nucleus and specialised structures (organelles), these cells are referred to as prokaryotes (from the Greek which means “before the nucleus”), the DNA of prokaryotic cells is held in the cytoplasm of the cell.

Prokaryote Cells Compared to Eukaryote Cells

Simple diagram showing differences in Eukaryote cells and Prokaryote cells.

Simple diagram showing differences in eukaryote cells and prokaryote cells.

Picture credit: Everything Dinosaur

The diagram above shows the basic differences between prokaryotic and eukaryotic cells.  Note the different scales, due to their unstructured form, prokaryotic cells are much smaller than eukaryotic cells.  Fossil evidence for cyanobacteria (prokaryotes) suggest that these cells first formed some 3.5 billion years ago (Archean Eon)*.  The first eukaryotic cells may have formed around 2.1 billion years ago**.

Visit Everything Dinosaur’s website: Everything Dinosaur.

Eukaryote Cells

Eukaryote cells most likely evolved from prokaryote cells at some point in the Paleoproterozoic.  How this came about is a subject of much debate.  One theory proposes predatory prokaryotes engulfed other smaller prokaryote cells.  Instead of these cells being consumed, a symbiotic relationship resulted with the smaller cells becoming the specialised elements of the larger cell.  Another theory suggests that more complex cells came about due to mutations during cellular division.  The presence of DNA strands in mitochondria which are not exactly the same as the DNA found within the host cell nucleus suggests that the mitochondria were once single-celled organisms in their own right.

The Significance of the Gaoyuzhuang Formation

Fossils described as macro-fossils are exceedingly rare in rocks older than the Late Neoproterozoic Era, but uranium – lead (U to Pb) radiometric dating suggests that the biota identified from the mudstones from the Gaoyuzhuang Formation (Yanshan area in the Hebei Province of northern China) are around 1.56 billion years old.  Other geological formations dated to over a billion years old which contain macro-fossils have been identified before, but it is the number and variety of the different types of fossil that marks out this strata as being something special.

Researchers Exploring the Exposed Mudstones Looking for Evidence of Ancient Life

Researchers examine the fine-grained mudstones which form part of the Gaoyuzhuang Formation.

Researchers examine the fine-grained mudstones which form part of the Gaoyuzhuang Formation.

Picture credit: Nature Communications

Exhibiting Multicellular Structures

Some of the fossilised structures measure up to thirty centimetres in length and eight centimetres wide.  The researchers conclude that the specimens may not represent the oldest know eukaryotes but they are the oldest eukaryotes that exhibit multicellular structures.  These organisms lived in a shallow marine environment and they were probably benthic (lived on the sea floor).  Analysis of the cells indicates that they may have been capable of photosynthesis and although large by Precambrian standards these organisms cannot be described as complex life.

Explaining the difference between complex life and these large multicellular structures, Professor Knoll stated that the Chinese fossils were:

“Large but I doubt that they were complicated – it’s an important distinction.”

Eukaryotic cells are capable of becoming specialised with different cells being responsible for different systems, functions and processes, a vital step on the path to complex life forms.  These cells, preserved as carbonaceous impressions in the rock show no signs of fundamental differentiation at the cellular level.

The Best Evidence Yet

These fossils provide the best evidence to date that multicellular eukaryotes of large size (greater than a centimetre in length), with a regular shape existed in marine environments at least a billion years prior to the Cambrian explosion.  They are multicellular but they are not the complex, more specialised and differentiated cells associated with more advanced organisms.

Treated Sections of the Fossils Showing the Cell Structure

Treated sections of the Gaoyuzhuang Formation fossils showing cellular structures.

Treated sections of the Gaoyuzhuang Formation fossils showing cellular structures.

Picture credit: Nature Communications

The picture above shows various views of the cell structure.  Pictures b and d show organic fragments with preserved cellular structure, the scale bar representing 100 μm (microns).  Pictures c and e show polygonal cells forming a multi-layered network (scale bar 20 μm).

The existence of these structures provides further evidence of the diversity of life during the Proterozoic, it also suggests that an increase in oxygen levels in conjunction with the establishment of a protective ozone layer in the Earth’s upper atmosphere may have permitted these multicellular organisms to form.

*/**The dates given for the first fossil evidence of prokaryotes and eukaryotic cells are speculative.

Go to Top